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Abstract- Transformers are the most important power 
conversion units used in the electrical systems 
considering their prices. The life of transformers has a 
considerable economic impact on the operation of 
electrical systems. Though the transformer life 
expectancy depends on the operating temperature, the life 
expectancy at various operating temperatures is not 
accurately known. The information regarding loss of life 
of insulation is considered to be the best way through 
which the transformer life expectancy can be expected. 
The most important parameter in transformers life 
expectancy is the insulation temperature value. The aim 
of this paper is to present a new and more accurate 
winding thermal model for dry-type transformers based 
on heat transfer theory, application of the lumped 
capacitance method and the thermal-electrical analogy. 
The proposed model is verified using experimental 
results, which have been obtained from temperature rise 
test performed on a 5 kVA dry-type transformer. 
 
Keywords: Dry-Type Transformers, Thermal Resistance, 
Winding Temperature, Dynamic Model.  
 

I. INTRODUCTION                                              
The kilovolt-ampere output rating of a transformer is 

that it can deliver continuously at rated secondary voltage 
and rated frequency without exceeding the specified 
temperature rise under usual service conditions. The term 
"rated output" or "rated load" refers to nameplate rating 
of continuously operation [1]. In recent years, the variety 
of transformer types available for use in small and 
medium power applications has grown considerable. The 
major types are oil filled transformers, gas insulated 
transformers and dry type transformers [5]. In oil filled 
and gas insulated transformers, the oil and gas are acting 
as insulation and a cooling medium. But the dry type 
transformer lacks any fluid for cooling. 

Dry-type transformers with standard classes 
corresponding to 80 °C, 115 °C, and 150 °C average 
winding rises have 150 °C, 185 °C, and 220 °C maximum 
hottest-spot operating temperatures, respectively [14]. 
Transformer life expectancy at various operating 
temperatures is not accurately known, but the information 
given regarding loss of life of insulation is considered to 
the best way through which the expectancy life can be 
expected using present knowledge of subject [1, 2, 5, 8]. 

Dry-type transformers are replacing liquid-immersed 
transformers in many commercial and industrial 
applications including power plants, hospitals, schools, 
multi-story buildings, paper and steel mills, mining, 
chemical plants and subway systems. They have several 
advantages over liquid-immersed transformers. The 
advantages are [13]: 
● Fire risk is significantly reduced by using the dry-type 
transformers. Some liquid immersed transformers are 
filled with flammable oil, which should be avoided in 
commercial and industrial applications. 
● Environmental concerns make the dry-type 
transformers more attractive. Liquid immersed 
transformers, especially PCB-filled transformers threaten 
the environment due to possible leakage. Since the 
leakage of such hazardous chemicals may contaminate 
drinking water and soil, and the resulting clean-up costs 
could be enormous. 
● Even though the core and windings of dry-type 
transformers are larger than those of liquid-immersed 
transformers, the overall size of dry-type transformers is 
smaller since do not require space for cooling radiators. 
● The installation cost for dry-type transformers are 
lower than that for liquid immersed transformers. 
Sometimes liquid immersed transformers require 
additional installation, which results in higher total 
installation cost, for example liquid-filled transformers 
require catch basins in case leakage occurs. 
● The maintenance of dry-type transformers is easier 
and the costs of operation are lower. For liquid-cooled 
transformers, the core and coils have to be removed from 
the tank for repairs, which can be messy and costly. 

Aging or deterioration of insulation is a function of 
time and temperature. Since, in most apparatus, the 
temperature is not uniform, the part of the winding 
insulation that is operating at the highest temperature will 
ordinarily undergo the greatest deterioration. Therefore, 
aging studies consider the aging effects produced by the 
highest temperature. The problem related to the accurate 
computation of heat transfer in power transformer 
applications is not particularly new [2]. It has been 
documented (extensively for oil-filled units, but sparsely 
for dry type units) in two main streams of the literature. 
Two main streams, mechanical engineering community 
and electrical engineering community do not necessarily 
emphasize on same aspects of phenomena under scope. 
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According to Previous studies [2, 3, 5, 8, 9, 11, 12], 
the variation of the temperature is described by an 
exponential equation based on the time constant of the 
transformer temperature rise model. In the thermal 
equivalent circuit model, the time constant is equal to 
multiplication of thermal capacitance and thermal 
resistance [2, 3, 5, 12]. The time constant used in this 
equation is equal to multiplication of the thermal 
capacitance and the thermal resistance of the temperature 
rise model. The thermal capacitance and thermal 
resistance of thermal equivalent circuit model are 
nonlinear and variable with temperature [3, 9].  The heat 
transfer theory, the lumped capacitance method and the 
thermal-electrical analogy are considered and used in this 
model [3, 9]. 

In this study, a simple model is presented based on 
parameters that can be calculated using the manufacture 
data of the transformer and routine test results. The value 
of the thermal equivalent capacitances is calculated from 
dry-type properties. The value of the thermal equivalent 
resistance is initially extracted from experimental data 
and to increase the model accuracy, this value is adjusted 
via simple procedure [5, 9]. 
 

II. TRANSFORMER LIFE EXPECTANCY 
The insulation aging phenomenon has been well 

documented as a thermal deterioration process in the 
literature. The application of loading on a transformer, 
i.e., the load current in the transformer coils, results in 
heating and, consequently, reduction in the age of the 
transformer. 

Loading capability of power transformers is limited 
mainly by winding temperature [1]. As part of acceptance 
tests on new units, the temperature rise test is intended to 
demonstrate that at full load and rated ambient 
temperature, the average winding temperature will not 
exceed the limits set by industry standards. However the 
temperature of the winding is not uniform and the real 
limiting factor is actually the hottest section of the 
winding commonly called winding hot spot. This hot spot 
area is located somewhere toward the top of the 
transformer, and not accessible for direct measurement 
with usual methods. Recommendations in IEEE C57.94 
guide are based on life expectancy of transformer 
insulation affected by operating temperature-time [14]. 

The Permissible loading of transformers for normal 
life expectancy depends on the design of the particular 
transformer, its temperature rise at rated load, 
temperature of the cooling medium, duration of the 
overloads, the load factor, and the altitude above sea level 
air is used as the cooling medium. Transformers are 
designed on the basis rise above the ambient temperature 
as determined by average winding resistance and are so 
rated on the nameplate, However, In actual operation, the 
hottest-spot temperature should be used as the limitation 
rather than the average winding temperature rise. 
Transformers may be operated continuously at hottest-
spot temperatures up to 150 °C, 185 °C, and 220 °C 
maximum for 80 °C, 115 °C, and 150 °C average 
winding rises rated transformers, respectively [14].  

III. LOSS COMPUTATION 
Temperature rise inside a transformer is the result of 

power losses. The transformer losses are composed of no-
load and load losses. The no-load losses are almost 
entirely core iron losses. These are calculated by the FEM 
by the summation of the uniform loss densities within the 
elements [7, 10]. The loss density distribution is obtained 
by estimating the iron loss values as a function of the 
magnetic flux density. The load losses, which are mostly 
Joule losses, can be split into three types [7]: 
● Resistive losses 
● Additional AC losses (eddy current losses) 
● Stray losses (in structural parts) 

Current harmonics cause an increase of the additional 
AC losses and the stray losses. For a stranded winding, 
with a non-prominent skin effect, the additional AC 
losses rise proportionally to the square of the harmonic 
order, which led to the traditional definition of the K-
factor [7]. The stray losses are very much construction 
dependent. The Joule losses in the windings are 
calculated by the summation of the integrated loss 
densities in the different finite elements in the windings. 
However, a different approach is chosen for the massive 
(foil) windings and stranded windings [7]. 

Foil windings: Both source and eddy current densities 
are present in the FEM magnetic field model. The total 
Joule loss is obtained by Equation (1). 
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Stranded windings: Since the eddy currents are 
neglected in this type of winding, only the DC losses are 
modelled. The contribution of the additional AC losses is 
to be estimated separately. This is accomplished by 
calculating the losses in an individual strand, subject to a 
leakage flux, modelled as a small massive conductor in 
additional FEM calculations. By varying the leakage flux 
strength, the additional loss function fec can be estimated 
and added [7]. This set of separate limited FEM 
calculations has to be performed only once for a certain 
strand dimension [7, 10]. 
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Temperature rise is one of the most crucial parameters 
that affect the transformer lifetime. Temperature rise can 
easily leads to the serious damages. This makes 
temperature estimation an important priority for 
engineers and companies. Different methods have been 
suggested. Among them, measurement of winding 
resistance according to IEEE/ANSI standards, usage of 
Fiber Optic for measurement of Hot-Spot temperature 
and software’s simulations can be mentioned [1, 2, 3, 5, 
7, 9, 11, 12].  

Thermal stress is one of the major causes of 
deterioration of insulation material for power 
transformers resulting in the failure of electrical 
distribution systems.  
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