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Abstract- This paper describes a new stochastic heuristic 
algorithm in engineering problem optimization especially 
in power system applications. An improved particle 
swarm optimization (PSO), called Adaptive particle 
swarm optimization (APSO), mixed with simulated 
annealing (SA) that will be named APSO-SA is 
introduced. This algorithm uses a novel PSO algorithm 
(APSO) to increase convergence rate and incorporate the 
ability of SA to avoid being trapped in local optimum. 
The APSO-SA algorithm efficiency is verified using 
some benchmark functions. This paper presents the 
application of APSO-SA to find optimal location, type 
and size of flexible AC transmission system devices. Two 
types of FACTS devices, Thyristor Controlled Series 
Capacitor (TCSC) and Static VAR Compensator (SVC) 
are considered. The main objectives of presented method 
are increasing the voltage stability index and over load 
factor, decreasing the cost of investment and total real 
power losses in the power system. In this regard, two 
cases namely, single-type devices (same type of FACTS 
devices) and multi-type devices (combination of TCSC, 
SVC) are considered. Using the proposed method, the 
locations, type and sizes of FACTS devices are obtained 
for reaching the optimal objective function. APSO-SA is 
used to solve the above non–linear programming problem 
for better accuracy and fast convergence. The presented 
method expands the search space, improves performance 
and accelerates to the speed convergence, in comparison 
with the standard PSO algorithm. The optimization 
results are compared with standard PSO method. This 
comparison confirms the efficiency and validity of the 
proposed method. The proposed approach is examined 
and tested on IEEE 14-bus systems by MATLAB soft 
ware. Numerical results demonstrate that the APSO-SA is 
fast and has much less computational cost. 
 
Keywords: FACTS Devices, Optimal Location, PSO 
Algorithm, SA Algorithm, APSO-SA Algorithm. 
 

I. INTRODUCTION 
Flexible AC Transmission System (FACTS) has 

received much attention in the last decades. It uses high 
current power electronic devices to control the voltage, 

power flow, stability, etc. of a transmission system. 
FACTS devices can be connected to a transmission line 
in various ways, such as in series, shunt, or a combination 
of series and shunt. The term and definition of various 
FACTS devices are described in references [1, 2]. 
FACTS devices are very effective and capable of 
increasing the power transfer capability of a line, insofar 
as thermal limits permit, while maintaining the same 
degree of stability [3, 4].  

In recent years, with the deregulation of the electricity 
market, due to the competition between utilities the 
number of unplanned delivered power increases. If these 
exchanges are not controlled, some lines may become 
overloaded. These devices control the power flow in the 
network, reduce the flow in overloaded lines, thereby 
resulting in increase loadability, low system losses, 
improved stability of network and reduced cost of 
production [1, 5, 6]. It is important to find the location, 
type and size of these devices because of their significant 
costs. Studies and realizations have shown their 
capabilities in steady state or dynamic conditions.  

The reference [7] provides an idea regarding the 
optimal locations of FACTS devices, without considering 
the investment cost of FACTS device and their impact on 
the generation cost. The optimal location with 
considering the generation cost of the power plants and 
investment cost of the FACTS devices studied in [8]. The 
reference [9] discusses about optimal location problem by 
power loss reduction. The main objective of this paper is 
to develop an algorithm to find and choose the optimal 
location, type and size of FACTS devices based on the 
Economic saving function, which obtained by energy loss 
reduction. In this paper presents the PSO and APSO-SA 
methods for ascertaining optimal location of FACTS 
devices to achieve minimum cost of FACTS devices, 
total real power losses in the power system and to 
improve system loadability (SL), while satisfying the 
power system constraints, for single and multi-type 
FACTS devices. In the single type case variables for the 
optimization of each device are its location in the network 
and its setting. In the case of multi-type devices, the type 
of device is taken as additional variable for optimization.  
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This paper is organized as follows. Following the 
introduction, mathematical models is described in section 
2. Then in section 3, objective function is described. In 
section 4, the proposed method for optimal location of 
FACTS devices is discussed in detail and section 5, 
implemented algorithm is described. The simulation 
results are given in section 6. Finally, a brief conclusion 
appears in section 7.    
 

II. MATHEMATICAL MODELS 
 
A. Steady State Models of FACTS Devices 

For static applications, FACTS devices can be 
modeled by Power Injection Model (PIM) [7, 8, 10, 11]. 
The injection model describes the FACTS as a device that 
injects a certain amount of active and reactive power to a 
node, so that the FACTS device is represented as PQ 
elements. The PIM doesn’t destroy the symmetrical 
characteristic of the admittance matrix and allows 
efficient and convenient integration of FACTS devices in 
to existing power system analytical tools. This is the main 
advantage of PIM. 
TCSC: 

Figure 1 shows the model of transmission line with 
TCSC connected between buses i  and j . The 
transmission line is represented by its lumped π  
equivalent parameters.  

 
 

 
 
 
 
 

 
 
 
 

Figure 1. Single line diagram of compensated transmission line 
with TCSC 

 
During the steady state condition, the TCSC can act 

as capacitive or inductive mode, respectively to decrease 
or increase the impedance of branch. The TCSC is 
modeled with variable series reactance. Its value is 
function of the reactance of line, LX , where the device is 
located. The upper and lower limit of TCSC reactance is 
given in (1). 

 (1) 
The corresponding power injection model of TCSC 

incorporated within the transmission line is shown in 
Figure 2 [12-14]. The difference of line admittance, 
before and after installation of TCSC is given in (2). 

 

 
Figure 2. Power injection model of TCSC 
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(3)  

When TCSC is installed in the line between buses i and
j , the reformed admittance matrix is obtained from (4). 

(4)  

SVC: 
The main purpose of SVC is voltage controlling at 

weak points in the network. Figure 3 shows the single 
line diagram of compensated transmission line with SVC 
at bus j and its power injection model is represented in 
Figure 4. In this study, the SVC is treated as a variable 
capacitance, where SVCI  is the complex injected current 
of SVC at node j  [14]. It can be expressed as follows: 

SVC SVC jI jB V= ∗  (5) 
 

jjV θ∠iiV θ∠
ijX

 
 

Figure 3. The single line diagram of compensated transmission line with 
SVC 

 

jjV θ∠iiV θ∠
ijX

jSVCI

 
 

Figure 4. Power injection model of SVC 
 

The SVC can behavior as capacitive or inductive 
mode to absorb or inject reactive power, respectively. 
The SVC   can   be   represented   by   a   shunt   variable 
susceptance inserted in the bus or at the midpoint of the 
transmission line. The SVC is a voltage controlling 
device and its susceptance must be determined for 
regulation of bus voltage at the desired value. The SVC 
nominal values are corresponding to power system. In 
this paper, we considered as below: 

100 100 MvarSVCQ− ≤ ≤ +  (6) 
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When the SVC is installed at node j , the reformed 
admittance matrix can be expressed as (7). 

0 0 0 ... 0 0 0
0 0 0 ... 0 0 0
0 0 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 0 0 0
0 0 0 ... 0 0 0
0 0 0 ... 0 0 0

SVC

Bus Bus

Y
Y Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ = + ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (7)  

 
B. Power System Model 

The power flow equations with FACTS devices are 
given as below: 

1
( cos sin ) 0

n

Gi Di i j ij FACTS ij ij FACTS ij
j

P P V V G Bδ δ− −
=

− − + =∑  (8) 

1

( sin cos ) 0
n

Gi Di i j ij FACTS ij ij FACTS ij
j

Q Q V V G Bδ δ− −
=

− − − =∑  (9) 

min maxi i iV V V≤ ≤  (10) 
max

ij ijδ δ≤  (11) 
where, 

,Gi GiP Q : Generated real and reactive power at bus i; 
,Di DiP Q : Real and reactive power of load at bus i; 

n : Number of buses; 
ij FACTSG − : Real part of (i, j)th element of network 

admittance matrix included FACTS devices; 
ij FACTSB − : Imaginary part of (i, j)th element of network 

admittance matrix included FACTS devices; 
ijδ : Difference of phase angle between buses i  and j ; 

min max
,i iV V : Maximum and minimum voltage 

magnitude at bus i . 
 

III. APSO-SA ALGORITHM 
In recent years, many optimization algorithms are 

introduced. Some of these algorithms are traditional 
optimization algorithms. Traditional optimization 
algorithms use exact methods to find the best solution. 
The idea is that if a problem can be solved, then the 
algorithm should find the global best solution. As the 
search space increases the cost of these algorithms 
increases. Therefore, when the search space complexity 
increases the exact algorithms can be slow to find global 
optimum.  

There are several stochastic algorithms such as: 
Genetic algorithms (GA) (Holland, 1975), Guided Local 
Search (GLS) (Voudouris, 1997), Tabu Search (TS) 
(Glover, 1989, 1990), Variable Neighbourhood Search 
(VNS) (Mladenovic and Hansen, 1997), Iterated Local 
Search (ILS) (Stützle, 1999), Simulated Annealing (SA) 
(Kirkpatrick et al. 1983), Greedy Randomized Adaptive 
Search Procedure (GRASP) (Feo and Resende, 1995), 
Memetic Algorithms (MA) (Moscato, 1989), Scatter 
Search (SS) (Cung et al. 1997), Ant Colony Optimization 
(ACO) (Marco Dorigo et al. 1999), Particle Swarm 
Optimization (PSO) (Kennedi and Eberhart 1995) and 

Shuffled Frog Leaping algorithm (SFL) (Eusuff, Lansey 
2003). Each of these algorithms has its characteristics. 
Particle swarm optimization (PSO) and simulated 
annealing (SA) are two efficient and well known 
stochastic algorithms.  

 
A. The Standard PSO Algorithm 

A particle swarm optimizer is a population based 
stochastic optimization algorithm modeled based on the 
simulation of the social behavior of bird flocks. PSO is a 
population-based search process where individuals 
initialized with a population of random solutions, referred 
to as particles, are grouped into a swarm. Each particle in 
the swarm represents a candidate solution to the 
optimization problem, and if the solution is combination 
of variables, the particle can correspondingly be a vector 
of variables. In a PSO system each particle is “flown” 
through the multidimensional search space, adjusting its 
position in the search space according to its own 
experience and that of neighboring particles. The particle 
therefore makes use of the best position encountered by 
itself and that of its neighbors to position itself toward 
and optimal solution. The performance of each particle is 
evaluated using a predefined fitness function, which 
encapsulates the characteristics of the optimization 
problem.  

Generally, a numerical optimization problem can be 
described as follows [15]: 

1 2min ( ), [ , ,..., ]
s.t. [ , ], 1, 2,...,

T
N

i i i

F X X x x x
x a b i N

=
∈ =

 (12) 

The core operation of PSO is the updating formulae of 
the particles, i.e. the velocity updating equation and 
position updating equation. The global optimizing model 
proposed by Shi and Eberhart (1999) is as follows:   

1 1

2 2

( 1) * ( ) * rand *( ( ))
* rand *( ( ))

id id id id

gd id

v t W v t C p x t
C p x t

+ = + − +

+ −
 (13) 

( 1) ( ) ( 1)id id idx t x t v t+ = + +  (14) 

where, idv  is the velocity of particle ith in dimension dth 
(is the particle position), W  is the inertia weight factor,

1C  and 2C  are two positive constant parameters called 
acceleration coefficients. Rand1 and rand2 are the random 
functions in the range [0, 1], idp  is the best position of the 
ith particle in dimension dth and gdp   is the best position 
among all particles in the swarm.   

 
B. Simulated Annealing 

Simulated Annealing (Metropolis et al. 1956, 
Kirkpatrick et al. (1983) [16, 17] is a metastrategy local 
search method that attempts to avoid producing the poor 
local maximum inherent in the steepest ascent method. It 
is a metaheuristic algorithm used to navigate through the 
space of solutions containing many local minimum and 
has been applied to many combinatorial optimization 
problems. The main idea behind Simulated Annealing is 
an analogy with the way in which liquids freeze and 
crystallize. When liquids are at a high temperature their 
molecules can move freely in relation to each other. As 
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the liquid’s temperature is lowered, this freedom of 
movement is lost and the liquid begins to solidify. If the 
liquid is cooled slowly enough, the molecules may 
become arranged in a crystalline structure. The molecules 
making up the crystalline structure will be in a minimum 
energy state. If the liquid is cooled very rapidly it does 
not form such a crystalline structure, but instead forms a 
solid whose molecules will not be in a minimum energy 
state.  

The fundamental idea of Simulated Annealing is 
therefore that the moves made by an iterative 
improvement algorithm are like the rearrangements of the 
molecules in a liquid that occur as it is cooled and that the 
energy of those molecules corresponds to the cost 
function which is being optimized by the iterative 
improvement algorithm. Thus, the simulated annealing 
algorithm aims to achieve a global optimum by slowly 
converging to a final solution, making downwards moves 
with occasional "upwards" moves (the probability of 
these occurring decreasing with the "temperature") and 
thus hopefully ending up in a global optimum. This is in 
contrast to the greedy approach of only considering the 
move which results in the largest possible decrease (if 
minimizing) in the objective function, which resembles a 
rapid cooling of a liquid to a solid, and thus according to 
the hypothesis, resulting in a local optimum rather than a 
global optimum.  

 In SA algorithm, the improvements are obtained by 
choosing another solution ( 'x ) that belongs to the 
neighborhood of the current solution ( 0x ). When the 
current solution changes from 0x  to 'x , the objective 
function will also change, namely, 0( ') ( )f x f xΔ = − , 

where '( )f x  is the value of the objective function at 'x . 
For the minimization problem, if 0Δ < , the new solution 

,x  will be accepted. If 0Δ ≥ , the new solution will be 
accepted with the probability exp( / )T−Δ , where T is the 
temperature (this is simply implemented by choosing a 
random number in the range from 0 to 1) and comparing 
this with the probability; if it is less, the new solution will 
be accepted otherwise it will be rejected. Generally, the 
algorithm starts from a high temperature, and then the 
temperature is gradually decreases. At each temperature, 
the search will be performed for a certain number of 
iterations, which is called the temperature length. When 
the termination condition is satisfied, the algorithm will 
stop. 

The most significant character of SA is the 
probabilistic jumping property, i.e. a worse solution has a 
probability to be accepted as the new solution. Moreover, 
by adjusting the temperature, such a jumping probability 
can be controlled. In particular, the probability is rather 
high when temperature is high and decreases as the 
temperature decreases; and when the temperature tends to 
zero the probability approaches to zero so that only better 
solution can be accepted. It has been theoretically proved 
that under certain conditions SA is globally convergent in 
probability 1. 

 

C. APSO-SA Algorithm 
Slow convergence of PSO before providing an 

accurate solution is a drawback, closely related to its lack 
of any adaptive accelerators in the velocity updating 
formulae. In Equation (13), 1C  and 2C  determine the step 
size of the particles movements through the idp  and gdp , 
respectively. In the original PSO, these step sizes are 
constant and for the all particles are same. For doing 
more sensitive and faster movements, new step sizes can 
be modified, which they should accelerate the 
convergence rate.  

In each iteration, the value of objective function is a 
criterion that presents the relative improvement of this 
movement in respect to the previous iteration movement. 
Thus the difference between the values of objective 
function in the different iterations can select as the 
accelerators. Adding two additional coefficients to the 
original step sizes in the Equation (13), it causes to 
adaptive movements. Therefore, velocity updating 
formula turns to the following form. 

1 1

2 2

( 1) * ( ) * rand *( ( ( ) ) ( ( ) ) )*
*( ( )) * rand *( ( ( ) ) ( ( ) ) )*

*( ( ))

id id id id

id id gd id

gd id

v t W v t C f p t f x t
p x t C f p t f x t

p x t

+ = + −

− + −

−

 (15)  

where, ( ( ))idf p t is the best fitness function that is found 
by ith particle and ( ( ))gdf p t   is the best fitness function 
that is found by swarm up to now and other parameters 
are chosen the same as section III.A. Globally optimize 
an objective function in a given search domain consists in 
finding its global optimum without being trapped in any 
local optimum. When strongly multi-modal problems are 
being optimized, PSO algorithm usually suffers from the 
premature suboptimal convergence (simply premature 
convergence or stagnation) which occurs when some poor 
particles attract the swarm, due to a local optimum or bad 
initialization, preventing further exploration of the search 
space. According to [18], although PSO finds good 
solutions much faster than other evolutionary algorithms, 
it usually can not improve the quality of the solutions as 
the number of iterations is increased. The rational behind 
this problem is that particles converge to a single point, 
which is on the line between the global best and personal 
best positions. This point is not guaranteed to be even a 
local optimum. Proofs can be found in [19].  

Another reason for this problem is the fast rate of 
information flow between particles, resulting in the 
creation of similar particles (with a loss in diversity) 
which increases the possibility of being trapped in local 
minima [20]. This feature prevents standard PSO from 
being really of practical interest for a lot of applications. 
In general, any mechanism that can increase diversity will 
help in preventing premature convergence. In fact, to 
overcome this issue, a “hybrid” method can be proposed. 
By combining APSO with SA algorithm, we can get a 
new mixed optimization approach, called APSO-SA.   

Using of jumping property of SA can help to more 
diversification that by it the algorithm escapes from local 
optimum. Fast and adaptive properties of APSO will help 
to rapid convergence, when SA combines with APSO. As 
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mentioned in section3.2. SA accepts worse solutions with 
a probability of exp( Δ/T)− . When algorithm becomes 
trapped in a local optimum valley it can jump of valley 
with a probability leaded to more diversity. So, with 
employing both of SA and APSO algorithms, to develop 
a new mixed algorithm APSO-SA, we can get full use of 
the strong quick convergence ability of APSO and the 
strong local search ability of SA and offsets the 
weaknesses of each other. In fact, APSO-SA has rapid 
convergence but not premature convergence.   

In APSO-SA algorithm, we name every point which 
is found by equation (16), the temporary point ( )idx p        
( ( ) ( 1)id idx p x t= + ). If ( )idx p is better than ( )idx t , it will 
be accepted and if it is worse than ( )idx t , we will accept 
it with probability of exp( / )T−Δ ,                                              
( ( ( ) ) ( ( ) )id idf x p f x tΔ = − ). This process is performed 
for all particles. When a temporary point rejected, that we 
name it a detoured particle ( )idx d , it is given back in the 
opposite direction of the previous movement. These 
descriptions are formulated by the following equations. 

( ) ( ) ( )id id idx p x t v t= +
( ( ) ) ( ( ) )id idf x p f x tΔ = −  

if 0 then ( 1) ( )id idx t x pΔ < + =  
if 0 then

( ) ( ) ( ) , ( 1) ( )id id id id idx d x p v t x t x dα
Δ ≥

= + ∗ + =
 

(16)  

where, 
( / )1 probability

1 other wise

Te
α

−Δ⎧+ =⎪= ⎨
−⎪⎩

 (17)  

In general, the proposed APSO-SA algorithm works 
as follows. First, the algorithm parameters such as 
number of particles, initial particles and velocities, 
constants of 1C   and 2C , 0T  and annealing schedule and 
any other parameters are initialized. Then the algorithm 
starts with the initial swarm as initial solutions. 
Computing new velocities using APSO algorithm, 
temporary positions are calculated. For each particle, Δ  
is calculated, if 0Δ <  then the solution will be accepted 
as a better solution, otherwise worse solution will be 
accepted with probability of exp( / )T−Δ , and detoured 
particle is turned back to the opposite direction of the 
traveled route, equations 16 and 17. This procedure 
causes diversification and escaping from local optimum. 
This process is iterated for all the particles in the swarm. 
Afterwards, the annealing schedule is performed. If one 
of the termination conditions is satisfied then the 
algorithm stops else the proposed procedure is iterated.   

The general pseudo-code for APSO-SA algorithm is 
given in Appendix A. 
1. The term ( ( ( ) ) ( ( ) ))id idf p t f x t−  and 
( ( ( ) ) ( ( ) ))gd idf p t f x t− are named local and global 
adaptive coefficients, respectively. In the each iteration, 
the former term defines the movement step size in the 
direction of best position which is found by ith particle in 
dimension dth and the later term defines movement step 
size in the direction of the best optimum point which ever 

have been found by the swarm, adaptively. In other 
words, the adaptive coefficients decrease or increase the 
movement step size relative to being close or far from the 
optimum point, respectively. By means of this method, 
velocity can be updated adaptively instead of being fixed 
or changed linearly. Therefore, using the adaptive 
coefficients, the convergence rate of the algorithm will be 
increased that it is performed by the proportional large or 
short steps. Here, this fast version of the PSO algorithm is 
called Fast PSO (APSO). 
2. Stochastic optimization approaches have problem 
dependent performance. This dependency usually results 
from the parameter setting of each algorithm. Thus using 
different parameter settings for APSO algorithm, which is 
a stochastic optimization algorithm, result in high 
performance variances. In general, no single parameter 
setting exists which can be applied to all problems. 
Therefore, all parameters of APSO should be determined 
optimally, by trial and error. 
3. There are three stopping criteria. The first criterion is 
related to the maximal number of iterations of the 
algorithm, the second one is when no improvement has 
been made for a certain number of iterations in the best 
solution and the third one is when a satisfactory solution 
is found. 
4. The adaptive version of PSO is proposed for 
continuous variable functions. Moreover, the main idea of 
fasting can be applied to the discrete form of the PSO 
[21]. 
5. Increasing the value of the inertia weight, w, will 
increase the speed of the particles resulting in more 
exploration (global search) and less exploitation (local 
search). On the other hand, decreasing the value of w will 
decrease the speed of the particle resulting in more 
exploitation and less exploration. Thus, an iteration-
dependent weight factor often outperforms a fixed factor. 
The most common functional form for this weight factor 
is linear, and changes with step i as follows:   

max min
1 maxt

iter

W W
W W t

N+

−
= − ×  (18) 

where iterN   is the maximum number of iterations and 

maxW   and minW  are selected to be 0.9 and 0.1, 
respectively.   
6. The initial temperature 0T   and the annealing way play 
important roles in SA and may affect the performance of 
APSO-SA. In the following simulations, the initial 
temperature is set by the following empirical formula 
[22]: 

0

( )
ln(0.2)

gdf p
T =  (19) 

The gdp  is the best position between the all particles 
in swarm. As for the annealing way, exponential 
annealing function, i.e. ( 1) ( )T t T tθ+ = ∗ , is employed, 
where 0 1θ< <  denotes the annealing rate. 
7. Stop condition typically can be happen, when no 
improvement has been made for a certain number of 
iteration or the maximum number of iteration has been 
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1LKIC P J+ + −

reached or when 0T   be smaller than the smallest typical 
temperature min( )T . 
8. Lastly, the proposed APSO is still a general 
optimization algorithm that can be applied to any real 
world continuous optimization problems. 

In this paper, we will apply such an approach for a 
multi objective function and we will compare the 
obtained results from APSO-SA with standard PSO 
algorithm for IEEE 14-bus system. 
 

IV. IMPLEMENTATION OF SUGGESTED 
ALGORITHM 

For implemented algorithm we used two cases: 
 

A. Single-Type case 
In this case, the goal of optimization is to find the best 

location of TCSC or SVC in the power system. 
Therefore, a configuration is represented with two 
variables as below: 
1. The first variable corresponds to the location of 
device and it contains the numbers of the nodes or 
branches where the FACTS device (TCSC or SVC) is 
located. The possible values are identified in Table 1. 

 
Table 1. Numbering  of  the power system elements 

 

Values                                        Elements 

1

1 1

1
n n

n

n b b

bus

n bus n
n branch

n n branch n

+

+

 

 
2. The second variable indicates the size of FACTS 
device. Its value will be normalized in the range of 0 to 1. 
According  to  the FACTS devices model, those real 
value, realFz , can be calculated as below: 

min max min( )realF F F F Fz z z z z= + −  (20)  

where, min Fz  and max Fz  are respectively minimum and 
maximum setting value of device and Fz  is its 
normalized value. 

 Figure 5a shows single line diagram of IEEE 14 bus 
system with FACTS device.  Figure 5b illustrates the 
configuration of coded solution for single type FACTS 
devices. 

 
B. Multi-Type Case  

In this case, the goal of optimization is to find the best 
location for two FACTS devices (TCSC and SVC). 
Hence, a configuration is represented with three variables 
as below [7]:  
1. The first element corresponds to the location of the 
devices and it contains the numbers of the elements 
(nodes and branches) where the FACTS devices are 
located. 
2. The second string indicates the type of devices. A 
value is assigned to each type of FACTS devices: 0 for 
no devices, 1 for TCSC and 2 for SVC. 

3. The third element shows the size of FACTS devices. 
It may take a discrete values normalized to be in range of 
0 to 1.  

Figure 6 illustrates the configuration of coded solution 
for multi type FACTS devices with three coded strings.  

 
Figure 5a. Single line diagram of IEEE 14-bus system with FACTS 

device 
 

 
 

Figure 5b. Configuration of coded solution for single type FACTS 
devices 

 

 
 

Figure 6. Configuration of coded solution for multi FACTS devices 
 

V. PROPOSED OBJECTIVE FUNCTION 
The main goal of optimization is to minimize the 

installation costs of FACTS devices and real power losses 
in power systems and to improve system load ability. The 
objective function is defined as sum of three terms with 
individual criteria. The first one is related to installation 
cost, the second part of the objective function concerns 
total real power losses in the power system and the third 
term corresponds to increasing load ability. 

 (21)  

The optimal installation cost of FACTS device in US$ 
is given as below: 

*IC C S=  (22)  
where, C  is the installation cost of FACTS devices in 
US$/KVAR . The installation cost of TCSC and SVC are 
taken from Siemens database and reported in [23]. The 
installation cost of various FACTS devices are given by 
(23). 

2

2

1.5 713 153750

0.3 305 127380
TCSC

SVC

C S S

C S S

= − +

= − +
  (23) 
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where, the S is the operating range of FACTS devices in 
MVAR. 

2 1S Q Q= −  (24)  

where, the 2Q  and 1Q  are the reactive power flow in the 
line after and before installing FACTS device in MVAR, 
respectively. 

The exact loss formula of a power system with N 
buses is [24]: 

'

1 1
[ ( ) ( )]

N N

LT jK j K j K jK j K j K
j K

P P P Q Q Q P P Qα β
= =

= + + −∑∑  (25) 

where jP , kP  and jQ , kQ , respectively, are the real and 
reactive powers injected at buses j and k. The jkα  and 

jkβ  are the loss coefficients defined by: 

cos( )jK
jK j K

j K

r
V V

α δ δ= −  (26) 

sin( )jK
jK j K

j K

r
V V

β δ δ= −  (27) 

where, the jkr  is the real part of the jk element of 
impedance matrix ( [ ]busZ ). If single type FACTS devices 
are used, the total loss can be written as follows [24]. 

' [ ]LK LT ic jcP P P P= − +  (28) 

More than one device used at time, the total loss can 
be expressed as: 

' [ ]LK LT ic jcP P P P= − +∑  (29) 

where icP , jcP  are injected real powers by installed 
FACTS devices. 

In (30) J  includes the indicating violation factor of 
line power flow limits and bus voltage limits [25]: 

LIne Bus
Line Bus

J OVL VS= ∏ ×∏  (30) 

where, the OVL and VS denote the line over load factor 
and bus voltage stability index, respectively. 

max

1

exp 1 pq

pq

POVL
P

λ

⎧
⎪⎪ ⎛ ⎞= ⎨ ⎜ ⎟−⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

max

max

pq pq

pq pq

P P

P P

≤

>
 (31) 

( )
1

exp 1 b

VS
Vβ

⎧⎪= ⎨ −⎪⎩
 (32) 

where, the pqP is real power flow between buses p  and 

q , max
pqP the thermal limit for line between p  and q , bV

the voltage at bus b , and λ  and β  are the small positive 
constants both equal to 0.1. 
  
A. Constraints  

Objective function is optimized with the following 
constraints: 
1. Line flow and bus voltage constraints. This constraint 
is defined by Equation (30). 
2. FACTS device's constraints 
( ) 0.8 0.2L TCSC Li X X X− ≤ ≤  (33) 

( ) 100MVAR 100MVARSVCii Q− ≤ ≤  (34) 

where, the TCSCX  and LX  are injected reactance by 
TCSC and reactance of the line where TCSC is installed. 
The injected reactive power by SVC at connected bus is 

SVCQ . 
3. Power flow constraints 

( , ) 0g V θ =  (35) 

where, 
( , )

( , ) ( , )

( , )

net
t t

net
t t

net
m m

P V P

g V Q V Q

P V P

θ

θ θ

θ

⎧ −
⎪

= −⎨
⎪ −⎩

}

Bus PQ

Bus PV

⎫⎪
⎬
⎪⎭

 (36) 

where, tP  and tQ  are the calculated real and reactive 
power for PQ bus, mP is the calculated real power for 
PV bus, net

tP  and net
tQ  are the specified real and reactive 

power for PQ  bus, V the voltage magnitude at different 
buses and θ  is the voltage phase angle at different buses. 

 
B. Finding MSL 

After the maximum numbers of iterations the value of 
J  is checked for the gdp  particle. If it is equal to 1 then 
using that gdp  particle, the current value of SL can be 
met out without violating line flow and bus voltage limit 
constraints and the gdp

 
particle is saved with its cost of 

installation and SL. Then SL is increased by 1% and 
again the PSO or APSO-SA algorithms are run. If the 
value of J  for the gdp  particle is not equal to 1 then the 

gdp  particle is unable to meet the current SL and the gdp  
particle with 1J = , obtained in the previous run is 
considered as the best optimal settings and the SL 
corresponding to that gdp  particle is considered as the 
MSL. The step by step procedure to find optimal 
installation cost of FACTS devices and the MSL is 
shown in Figure 7. 
 

VI. SIMULATION RESULTS 
The solutions for optimal location of FACTS devices 

to minimize the objective function for IEEE 14-bus 
system was obtained and discussed below. The test 
system data are taken from [26]. The location, setting of 
FACTS devices and optimal objective function value, 
total real power losses of power system and maximum 
system loadability (MSL) are obtained using the PSO and 
APSO-SA techniques for single-and multi-type devices 
and it is given in Table 2. In this table, the pqbP , pqbQ and 

pqaP , pqaQ  are real and reactive power flow in the line 
p q− , before and after placing FACTS device, 

respectively. Convergence speed of the objective function 
with using the PSO and APSO-SA techniques for single 
and multi-type devices are shown in figures 9 to 11, 
respectively. 

In the case of TCSC, it can be seen that the TCSC 
must be installed in line (5-6) with using PSO and APSO-
SA techniques. It is observed that the improvement in 
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objective function value and total real power losses of the 
power system ,but increasing installation cost of TCSC 
with using APSO-SA algorithm, in comparison with the 
standard PSO algorithm. 

In the case of SVC, it is observed that placing SVC in 
a bus 13 with using PSO and APSO-SA techniques 
causes improvements in objective function value, total 
real power losses in the power system and MSL, but 
increased installation cost of SVC with using APSO-SA 
algorithm, in comparison to the standard PSO algorithm. 

In the case of multi-type devices, improvement in 
objective function value, total real of power losses of in 
the power system, installation cost and MSL with using 
APSO-SA algorithm, in comparison with the standard 
PSO algorithm was observed. 

It is observed in Figs.8-10, speed convergence 
sensible in the case of multi-type in comparison with case 
of single-type. 

 
VII. CONCLUSIONS 

In this paper, the optimal location of FACTS devices 
are found to minimize the cost of installation and total 
real power losses of power system and improve system 
loadability, for single and multi-type FACTS devices 
using PSO and APSO-SA techniques. Simulations were 
performed on IEEE 14 bus system. Optimizations were 
performed on the parameters namely location of FACTS 
devices, their settings in the line for single-type FACTS 
devices. In the case of multi-type FACTS devices, the 
type of device to be placed is also considered as a 
variable in the optimization. In both single-and multi-type 
devices, it is observed that: 
1. The APSO-SA algorithm improves acceleration of the 
convergence speed, in comparison with the standard PSO 
algorithm. 
2. The APSO-SA algorithm expands the search space, in 
comparison with the standard PSO algorithm. 
3. Decreasing the real power losses of power system 
with optimal location FACTS devices. 
4. System loadability can be improved further after 
optimal placing of FACTS devices. 
5. In the case of multi-type FACTS devices improve 
objective function, in comparison with the case of single-
type. 
6. Real and reactive power flow improved after placing 
FACTS devices when compared with before placing 
them. 

 
APPENDIX 

The pseudo code for APSO-SA algorithm    
Initialize APSO-SA parameters.  
(APSO procedure)  
Loop:  
REPEAT  
For each particle i;  
Evaluate the objective function of the particle i, i.e. 
f(xid(t));  
Update the global and local best positions and their 
objective function values;  

Calculate the velocity by Equation (15);  
(SA procedure)  
Calculate the temporary position ( )idx p by Equation 
(16);  
Using the equation (17) calculate the new position;  
Perform annealing schedule;  
END of Loop  
If stop condition is true then stop else go to Loop; 
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 Start 

 Preparation of  database using line, bus, generator and load 
data, Get type of FACTS devices to be installed, number of 

paricles and max, iterations.

Generation population of particles with the 
variables in normalized form 

Check for proper arrangement of FACTS devices, compute line 
flows and voltage at buses for each particle, by denormalizing 

the variables, updating line data&bus data and running load flow 
using Netton Raphson method 

 Calculate J for each particle 

 Compute the fitness function using 
the eqn.(21) for each particle 

Find out the pgd  particle having minimum value of 
fitness function in the population and pid for each particle   

Create new population using the eqns (13) and (14) 
Or 

using the eqns.(15) and (16)

 Print find pgd  particle with J=1 and IC and SL (MSL) 

Particle and its cost (IC) Save SL, pgd 

 Is Max iter?

 
Is J=1 for  

Pgb particle? 

 Increment 
SL by 1% 

 stop 

NO

NO

Yes

Yes

 
Figure 7. The Flowchart of PSO or APSO-SA algorithm for optimal location of FACTS devices 

 
Table2. Line flows before and after installing single- and multi-type FACTS devices, optimal setting and optimal objective function value, cost of 

installation, total real power losses and MSL  with PSO and APSO-SA algorithm 
 

MSL  
IC 

$)
6

10(* US  

P(LK)(b) 
(118MW) 
P(LK)(a) 

(MW)  

F  
Device 
Setting 

(pu)  

Qpqa 
(pu)  

Ppqa 
(pu)  

Qpqb 
(pu)  

Ppqb 
(pu)  

To 
Bus  

From 
Bus  

Type of 
device used  

Case  

1  0.0034  59.208  0.258  -0.47  1.01  1.45  1.026  1.385  6  5  
TCSC 
(PSO)  

Single 
Type  

1  0.0059  58.8  0.237  -0.61  0.979  1.5  1.026  1.385  6  5  
TCSC 

(APSO-SA)  

1.025  0.031  59.62  0.21  -0.34  -0.037  -0.161  -0.058  -0.135    13  
SVC 

(PSO)  

1.029  0.032  58  0.193  -0.41  0.01  -0.164  -0.058  -0.135    13  
SVC 

(APSO-SA)  
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