
 
 

 

International Journal on 
 

“Technical and Physical Problems of Engineering” 
 

(IJTPE) 
 

Published by International Organization of IOTPE 
 

ISSN 2077-3528 
 

IJTPE Journal 
 

www.iotpe.com 
 

ijtpe@iotpe.com 

September 2013 Issue 16                             Volume 5                         Number 3 Pages 109-117 

 

109 

HYBRID ARTIFICIAL NEURAL NETWORK AND HONEY BEE MATING 

OPTIMIZATION BASED ON OPTIMAL POWER SYSTEM STABILIZER IN 

MULTIMACHINE ENVIRONMENT 
 

A. Talebi 1     M. Nooshyar 2     A. Akbarimajd 2 
 

1. Technical Engineering Department, Science and Research Branch, Islamic Azad University, Ardabil, Iran 

amin.t1988@gmail.com 

2. Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran 

 nooshyar@uma.ac.ir, akbarimajd@uma.ac.ir 

 

 

Abstract- A Hybrid technique of Artificial Neural 

Network and Honey Bee Mating Optimization                    

(H-ANN-HBMO) is presented in this paper to damp 

power system oscillation in multi machine environment. 

By considering this strategy the weights of ANN is 

optimized to find the optimum work point of controller. 

The proposed strategy consists of an ANN controller, 

which is used as a power system stabilizer in power 

system to damp the received signal from generator and 

the HBMO technique for tuning the ANN parameters. 

The proposed method has the features of a simple 

structure, adaptive and fast response. In proposed 

syndicate tuning technique, three performances indicate 

as ITAE and FD is computed for stability and 

performance at each of given set of operating conditions 

of the system. This newly proposed controller is more 

efficient because it cope with oscillations and different 

operating points. The effectiveness of proposed controller 

is tested in two case studies. The first one is single 

machine infinite bus system and second case study is         

10-machine New England power system. 
  
Keywords: ANN, Power System, PSS, Multi-Machine. 

 

I. INTRODUCTION  

Some of the earliest power system stability problems 
included spontaneous power system oscillations at low 
frequencies. These Low Frequency Oscillations (LFOs) 
are related to the small signal stability of a power system 

and are detrimental to the goals of maximum power 
transfer and power system security. Once the adjustment 
of using damper windings on the generator rotors and 
turbines to control these oscillations was found to be 
satisfactory, the stability problem was thereby 
disregarded for some time [1]. 

However, as power systems began to be operated 
closer to their consistency limits, the weakness of a 
synchronizing torque among the generators was 
distinguished as a major cause of system instability [2]. 
Automatic Voltage Regulators (AVRs) helped to improve 
the steady-state stability of power systems, but transient 

stability started a concern for the power system operators. 

With the development of large, interconnected power 

systems, another concern was the transfer of large 

amounts of power across extremely long transmission 

lines. The addition of a supplementary controller into the 

control loop, such as the introduction of power system 

stabilizers (PSSs) to the AVRs on the generators, supplies 

the means to reduce the inhibiting effects of low 

frequency oscillations [3]. Most of the time the PSSs and 

AVRs are locally controlled, which means that, the 

controller is designed to act on measurements such as bus 

voltage, generator shaft speed, or rotor angle of the 

associated machine’s controls as presented in Figure 1. 

Recently, PSSs. Conventionally lead-lag control is the 

old, traditional methods, which has fixed structure and 

designed by a linear model obtained by linearizing 

nonlinear model around a nominal operating point to 

provide the optimum performance for the nominal 

operating condition and system parameters [4-5] has 

proposed several methods for damping the oscillation in 

power system. 

 

 
 

Figure 1. Local feedback controller 

 

Although, this method satisfy the stability of system 

in some work points but, the main problem encountered 

in the Conventional PSS (CPSS) design is the power 

system constantly experiences changes in operating 

conditions due to variation in generation and load 

patterns, as well as changes in transmission networks. 

Therefore, the achieved results of this technique present 

poor dynamic performance [6]. To overcome these 

problems, a number of techniques have been developed 

for designing PSSs, recently. Intelligent optimization 

based methods have been initiated to solve this problem. 
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Two main techniques used for the parameter tuning of 

the PSS in the power system are sequential tuning and 

simultaneous tuning. To find a set of optimal PSS 

parameters under different operating conditions, the 

tuning, and analyzing of PSS parameters must be 

repeated over different operating conditions of the system 

[7]. The simultaneous tuning of PSS parameters is 

commonly formulated as a very large scale, nonlinear, 

non-differentiable optimization problem. The mentioned 

optimization problem is difficult to solve by applying 

traditional differentiable optimization algorithms. 

Sequential quadratic programming (SQP) techniques are 

fast deterministic optimization techniques [8], but they 

are very sensitive to the choice of initial point.  

To overcome the abovementioned problems, many 

random search methods such as Tabu search (TS) [9], 

Simulated Annealing (SA) [10], Ant Colony 

Optimization (ACO) [11] and Harmony Search (HS) 

[12], Evolutionary Programming (EP) [13], Bacteria 

Foraging Optimization (BFO) [14], Genetic Algorithm 

(GA) [15], and Particle Swarm Optimization (PSO) [16-

17] have been used. To find an appropriate solution 

through robust control with good accuracy, this paper 

proposed a hybrid technique with the combination of 

Honey Bee Mating Optimization (HBMO) and Artificial 

Neural Network (ANN). 

According to the advantages of the mentioned 

techniques, this newly proposed technique play fast 

controller role in multi-machine power system by 

damping the oscillation in different operation condition. 

The effectiveness of the proposed technique is applied 

over two test cases as, single machine infinite bus system 

which is compared with SPEA and GA [18], and 10 

machine 39 buses New England power system with the 

comparison by PSO and CPSS [19]. The obtained 

numerical results demonstrate that proposed technique is 

effective and alternative to other compared techniques. 
 

II. PROBLEM STATEMENT 

The complex nonlinear model related to an n-machine 

interconnected power system, can be described by a set of 

differential algebraic equations by assembling the models 

for each generator, load, and other devices such as 

controls in the system, and connecting them appropriately 

via the network algebraic equations. The synchronous 

machine is the most important part of power systems and 

includes electromechanical system, which is made of two 

parts as, electrical and mechanical parts. The model of 

power system in this paper is simulated by deferential 

equations for this paper [20]. Figure 2 shows the place of 

fuzzy controller in the power systems as a PSS [1]. 
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Figure 2. Structure of PSS in power systems [1] 

 

III. INTELIGENT CONTROL STRATEGY 

 

A. Honey Bee Mating Optimization 

The honeybee is a social insect that can survive only 

as a member of a community, or colony. The colony 

inhabits an enclosed cavity. A colony of honey bees 

consist of a queen, several hundred drones, 30,000 to 

80,000 workers and broods during the active season. A 

colony of bees is a large family of bees living in one 

beehive. The queen is the most important member of the 

hive because she is the one that keeps the hive going by 

producing new queen and worker bees [21]. Drones role 

is to mate with the queen.  

Tasks of worker bees are several such as rearing 

brood, tending the queen and drones, cleaning, regulating 

temperature, gather nectar, pollen, water, etc. Broods 

arise either from fertilized (represents queen or worker) 

or unfertilized (represents drones) eggs. The HBMO 

Algorithm is the combination of several different 

methods corresponded to a different phase of the mating 

process of the queen. In the marriage process, the 

queen(s) mate during their mating flights far from the 

nest. A mating flight starts with a dance performed by the 

queen who then starts a mating flight during which the 

drones follow the queen and mate with her in the air. 

In each mating, sperm reaches the spermatheca and 

accumulates there to form the genetic pool of the colony. 

The queen’s size of spermatheca number equals to the 

maximum number of mating of the queen in a single 

mating flight is determined. When the queen mates 

successfully, the genotype of the drone is stored. At the 

start of the flight, the queen is initialized with some 

energy content and returns to her nest when her energy is 

within some threshold from zero or when her 

spermatheca is full.  

In developing algorithm, the functionality of workers 

is restricted to brood care, and therefore, each worker 

may be represented as a heuristic, which acts to improve 

and/or take care of a set of broods. A drone mates with a 

queen probabilistically using an annealing function as 

[22]: 
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where, Prob (Q, D) is the probability of adding the sperm 

of drone D to the spermatheca of queen Q (that is, the 

probability of a successful mating), ∆ ( f ) is the absolute 

difference between the fitness of D (i.e., f (D)) and the 

fitness of Q (i.e., f (Q)), S (t) is speed of queen at time t. 

It is apparent that this function acts as an annealing 

function, where the probability of mating is high when 

both the queen is still in the start of her mating-flight and 

therefore her speed is high, or when the fitness of the 

drone is as good as the queen’s. After each transition in 

space, the queen’s speed, S(t), and energy, E(t), decay 

using the following equations: 

( 1) ( )(2)S t s t    (7) 

( 1) ( )E t E t     (8) 

where, α is a factor and γ is the amount of energy 

reduction after each transition. In addition, Algorithm and 

computational flowchart of HBMO method to optimize 

the PSS parameters is presented in Figure 3 [22]. 

 

 

Figure 3. Algorithm and computational flowchart of HBMO [22] 

 

Thus, HBMO algorithm may be constructed with the 

following five main stages [23]: 

1. The algorithm starts with the mating-flight, where a 

queen (best solution) selects drones probabilistically to 

form the spermatheca (list of drones). A drone is then 

selected from the list at random for the creation of broods 

2. Creation of new broods by crossoverring the drones 

genotypes with the queen’s 

3. Use of workers (heuristics) to conduct local search on 

broods (trial solutions) 

4. Adaptation of workers fitness based on the amount of 

improvement achieved on broods. 

5. Replacement of weaker queens by fitter broods 

 

B. Artificial Neural Network 

The increasing prominence of the computers has led 

to a new way of looking at world. Artificial Neural 

Networks (ANN) and HBMO are considered as so called 

soft computing methods are now a days becoming 

predominant tools in area of Artificial Intelligence linked 

application oriented methods. The Neural network theory 

was first adopted in 1940 where starting point was the 

learning law presented by ITEBB in 1949, where 

demonstrated how neurons could exhibit learning 

behavior [24]. 

The application further waxed and waned away 

because of lack of powerful technological advancement. 

The resurgence occurred recently due to the new methods 

that are emerging as well as the computational power 

suitable for simulation of interconnected neural networks 

[25].  

Further to the technological advancement in the field 

of ANN, researchers were attracted on their important 

applications where logical and relational thinking is 

required. Among the major applications viz., robotics, 

analysis, optimal control, database, learning, signal 

processing, semiconductors, power system related 

applications became a useful tool for the online 

researchers in this field. 

ANN is biologically inspired and represented as a 

major extension of computation. They embody 

computational paradigms, based on biological metaphor, 

to mimic the computations of brain [26]. The improved 

understanding of the functioning of neuron and the 

pattern of its interconnection has enabled researchers to 

produce the necessary mathematical model for testing 

their theories and developing practical applications. 

Main applications of the ANN’s can be divided into 

two principal streams. The first stream among this is 

concerned with modeling the brain and thereby explains 

its cognitive behavior. The primary aim of researchers in 

the second stream is to construct useful ‘computers’ for 

real world problems of classification or Pattern 

Recognition by drawing on these principles. 

  

B.1. Definition of the Neural Network 

Neural networks are systems that typically consist of 

a large number of simples processing units, called 

Neurons. A neuron has generally a high-dimensional 

Input vector and one single output signal. This output 

signal is usually a non-linear function of the input vector 

and a weight vector.  
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The function to be performed on the Input vector is 

hence defined by the non-linear function and the weight 

vector of the neuron. The weight vector is adjusted in a 

training phase by using a large set of examples and the 

learning rate. The learning rule adapts the weight of all 

neurons in networks in order to learn an underlying 

relation in the training example. 

 

B.2. Artificial Neural Network Fundamentals 

Elementary processing unit of ANN’s is neuron. 

Generally it contains several inputs but has only one 

output. The main differences between various existing 

models of ANN are mainly in their architectures or the 

way their basic processing elements (neurons) are 

interconnected. As basic element, the neurons are not 

powerful but their interconnections allow encoding 

relationship between variables of the problems to which it 

is applied and providing very powerful processing 

capabilities. General model of the processing unit of 

ANN can be considered to have the following three 

elements [27]. Figure 4 shows the schematic diagram of 

the neuron. 

 

 
 

Figure 4. Schematic Diagram of the Neuron 

 

In this paper the presented weights are optimized by 

HBMO. So descriptions of weights are presented in 

below. 

 

C. Weighted Summing Unit 

The weighted summing unit consists of external or 

internal inputs Xi (x1, x2, x3, …, xn) times the 

corresponding weights Wij = (wi1, wi2, … win). The fixed 

weighted inputs may be either from the previous layers of 

ANN or from the output of neurons. If these inputs are 

derived from neuron outputs, it forms feedback 

architecture it has feed forward architecture [28]. 

 

D. Linear Dynamical Function 

It is essentially a single input or single output function 

block. This block may exist for time varying signals and 

introduces a function that is an integral, a proportional, a 

time delay or a combination of these. For example, 

following two general functions can be used to relate 

input Pi with output Qi as: 

     1 2,  i ia a Q t P t  (9) 

   i iQ t P t T   (10) 

 

E. Nonlinear Function 

This decides the firing of neuron for a given input 

values. It is a static nonlinear function, which may be 

pulse type or step type, differentiable (smooth) or                         

non-identification (sharp) and having positive mean or 

zero mean. Some of the examples of such functions are 

threshold, sigmoid, Tan hyperbolic or Gaussian 

functions. Different characteristics of neurons can be 

evolved using different type and combination of the 

above three of its basic components. 

- Perception models consist of weighted summing unit 

having no feedback inputs, no dynamic function, and 

signal as nonlinear function. 

- Feedback or dynamic networks utilize the dynamic 

function block. 

In this paper, a multi-layer feed-forward neural 

network is applied. Major application of feed-forward 

neural network is in large-scale systems that contain a 

large number of variable and complex systems where 

little analytical knowledge is available. Figure 5 shows 

the three layer of this application. 

 

 
 

Figure 5. Three Layer feed-forward neural network 

 

IV. HYBRID TECHNIQUE OVER TEST CASES  

In this section, the proposed hybrid strategy is applied 

over two case studies in literature as, 

 

A. Single-Machine Infinite Bus System 
The first one is the single-machine infinite bus system 

considered for small-signal performance study, which is 

shown in Figure 6 [4]. The third-order model comprising 

of the electromechanical swing equation and generator 

internal voltage equation represents the generator. 
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Figure 6. Schematic diagram of 1 machine infinite bus system and 

MOHBMOPSS [4] 
 

B. New England Power System 

The second case is the 10-machine 39-bus power 

system shown in Figure 7. To assess the effectiveness and 

robustness of the proposed method over a wide range of 

loading conditions, different operation conditions are 

considered. Details of the system data and operating 

condition are given in reference [19]. 

Neuron 

Incoming Weighted Connections 

Output = F(∑ Inputs) 

Outgoing Weighted Connections 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 16, Vol. 5, No. 3, Sep. 2013 

113 

V. APPLYING MOHBMO TECHNIQUE TO 

POWER SYSTEM 

 

A. Single-Machine Infinite Bus System Results 

In this paper, three performance indices are 

considered as Demerit (FD) and Integral of the Time 

multiplied Absolute value of the Error (ITAE) for both 

case studies are presented, respectively.  
 

 
Figure 7. Ten-machine 39-bus new England power system [4] 

 

It is very important that, the performance of the 

proposed controller be tested under transient conditions 

by applying a 6-cycle three-phase fault or increasing the 

mechanical torque. The simulation operated with hybrid 

HBMO-ANN are considered and compared with other 

techniques. The simulation results are presented in         

Figures 8 and 9. 
 

 
 

Figure 8. System response by 0.2 pu. step increasing the mechanical 
torque in t = 1, Solid (Proposed-PSS), Dashed (SPEA-PSS) Doted  

(GA-PSS), (a) P = 0.8, Q = 0.4, Xe = 0.3, (b) P = 0.5, Q = 0.1, Xe = 0.3,        
(c) P = 1.0, Q = 0.5, Xe = 0.3 

 
Figure 9. System response by 0.2 pu step increasing the mechanical 
torque in t = 1, Solid (Proposed-PSS), Dashed (SPEA-PSS) Doted   

(GA-PSS), (a) P = 0.8, Q = 0.4, Xe = 0.6, (b) P = 0.5, Q = 0.1, Xe = 0.6,        

(c) P = 1.0, Q = 0.5, Xe = 0.6 
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The details of load conditions are presented in Table 1 

and the numerical results for these load conditions for FD 

and ITAE are presented in Table 2. It can be seen that the 

overshoot, undershoot, settling time and speed deviations 

of machine is greatly reduced by applying the proposed 

H-HBMO-ANN controller. 

 

B. New England System Results 

In this part, three scenarios are considered over the 

second case. Figure 10 shows the trend of HBMO 

convergence over weights in two case studies. 

 
Table 1. Condition for compare simulation 

 

H Xe Q P Case No. 
3.25 

3.25 
3.25 

3.25 

3.25 
3.25 

3.25 

3.25 
3.25 

0.81 

0.3 
0.3 
0.3 
0.6 
0.6 
0.6 
0.6 
0.3 
0.6 
0.3 

0.4 
0.1 
0.5 
0.4 
0.1 
0.5 
0.0 
-0.2 
-0.2 
0.2 

0.8 

0.5 
1.0 
0.8 

0.5 
1.0 
0.8 

1.0 
0.5 
1.0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
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Table 2. Calculate of FD and ITAE for 10 point with three faults in 1 sec 
 

GA SPEA H-HBMO-ANN 
No. 

FD ITAE FD ITAE FD ITAE 

4.838 

5.747 
4.945 

4.738 

5.647 
4.955 

4.748 

4.933 
5.202 

4.901 

1.508 

1.895 
1.578 

1.418 

1.455 
1.388 

1.418 

1.579 
1.795 

1.579 

4.543 

5.019 
4.682 

4.672 

5.123 
4.673 

4.398 

4.709 
4.909 

3.784 

1.424 

1.713 
1.501 

1.472 

1.809 
1.356 

1.378 

1.398 
1.788 

1.404 

3.687 

3.836 
3.837 

3.736 

3.166 
3.834 

3.736 

3.876 
3.809 

3.998 

0.670 

1.111 
0.801 

0.670 

1.124 
0.802 

0.673 

0.802 
1.124 

0.808 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 

 
 

Figure 10. Trend of HBMO convergence over weights 

 
Table 3. Calculate of FD and ITAE for different load changes 

 

Change load 
HBMO PSO CPSS 

ITAE FD ITAE FD ITAE FD 

25% 3.5370 3.6498 4.0625 3.7832 8.4488 4.9543 

20% 1.2992 2.5336 1.4169 2.5026 2.0137 2.8463 

15% 0.8193 1.9142 0.9741 1.9912 1.3903 2.3726 

10% 0.7441 1.6597 0.8588 1.7565 1.2431 2.1260 

5% 0.6785 1.4409 0.7801 1.5277 1.1752 1.9497 

Nominal 0.6216 1.3083 0.7106 1.3821 1.0574 1.8661 

-5% 0.5745 1.2347 0.6521 1.3178 1.0049 1.8278 

-10% 0.5732 1.2627 0.6597 1.2927 1.0378 1.8709 

-15% 0.6877 1.4744 0.8019 1.6282 1.1271 2.1513 

-20% 1.4966 2.3386 1.8361 2.4990 2.0636 2.8972 

-25% 8.2929 3.8878 9.5537 3.9602 10.3716 4.8344 

 
Table 4. Calculate of FD and ITAE for different load changes 

 

Change load 
HBMO PSO CPSS 

ITAE FD ITAE FD ITAE FD 

25% 3.8818 1.5772 3.9355 1.6080 3.6569 1.6273 

20% 1.3068 1.3882 1.4097 1.4092 1.3465 1.4904 

15% 0.6135 1.0192 0.6741 1.0710 0.8902 1.3865 

10% 0.5665 0.9507 0.6188 0.9851 0.8564 1.3499 

5% 0.5597 0.9379 0.6074 0.9763 0.8535 1.3619 

Nominal 0.5668 0.9453 0.6053 0.9873 0.8761 1.3635 

-5% 0.5716 0.9605 0.6023 1.0054 0.8668 1.3719 

-10% 0.5734 0.9023 0.5962 0.9608 0.8662 1.3857 

-15% 0.6028 0.9453 0.6178 1.0048 0.8762 1.4063 

-20% 0.7472 1.2391 0.7371 1.1980 0.9326 1.4354 

-25% 3.5174 1.5012 3.5939 1.6231 2.2669 1.4812 

 

 Scenario 1 

It is very important that, the performance of the 

proposed controller be tested under transient conditions 

by applying a 6-cycle three-phase fault or increasing 

mechanical torque. Therefore, in this scenario a 6-cycle 

three-phase fault is applied in line 26-29 and bus 29. The 

responses of generators 2-10 are presented in Figure 11. 

In addition, the numerical results of FD and ITAE are 

presented in Table 3. 

 Scenario 2 

In this scenario, a 6-cycle three-phase fault is applied 

in line 26-29 and bus 29. Where, the system is come back 

to the stability status without omitting the error. The 

responses of generators 2-10 are presented in Figure 12 

without omitting the line. In addition, the numerical 

results of FD and ITAE are presented in Table 4. 

 Scenario 3 

In this scenario a 0.1 step is applied over the torque of 

generators. The responses of generators 2-10 are 

presented in Figure 13 without omitting the line. In 

addition, the numerical results of FD and ITAE are 

presented in Table 5. 

 
Table 5. Calculate of FD and ITAE for different load changes 

 

Change load 
HBMO PSO CPSS 

ITAE FD ITAE FD ITAE FD 

25% 3.5654 1.2342 3.8689 1.5011 3.6947 1.3109 

20% 0.4916 0.8103 0.5591 0.9978 0.7989 1.0382 

15% 0.2007 0.6192 0.2327 0.6923 0.4571 1.0411 

10% 0.2013 0.6092 0.2120 0.6271 0.4539 1.0117 

5% 0.2091 0.5777 0.2122 0.6032 0.4771 1.0446 

Nominal 0.2037 0.6037 0.2167 0.6069 0.5069 1.0488 

-5% 0.2125 0.6099 0.2242 0.6178 0.5294 1.0551 

-10% 0.2227 0.6326 0.2325 0.6373 0.5404 1.0621 

-15% 0.2545 0.6849 0.2610 0.6993 0.5570 1.0726 

-20% 0.4096 0.9194 0.4140 0.9358 0.7436 1.1157 

-25% 2.3918 1.1977 2.6551 1.2324 4.6553 1.6898 

 

VI. CONCLUSIONS 

In this paper, a design scheme of robust PSS for 

single machine connected to an infinite bus and ten-

machine New England power system using hybrid 

technique have been developed. So, the hybrid technique 

of Artificial Neural Network and Honey Bee Mating 

Optimization (H-ANN-HBMO) is presented to damp 

power system oscillation where the weights of ANN are 

optimized to find the optimum work point of controller. 

The proposed technique is tested in various load 

condition for the solution of the low frequency oscillation 

problem in power system. The single machine infinite 

bus system is compared with SPEA and robust PSS that 

is tuned by GA through the mentioned performance 

indicates. The second case study is compared with PSO 

and CPSS under different load conditions. The achieved 

numerical results of power systems demonstrate that the 

proposed strategy is superior to other compared methods. 

 

NOMENCLATURES 

δ: Rotor angle 

ω: Rotor speed 

Pm : Mechanical input power 

Pe : Electrical output power 

qE  : Internal voltage behind dx  

Efd : Equivalent excitation voltage 

Te : Electic torque 

doT  : Time constant of excitation circuit 

KA : Regulator gain 

TA : Regulator time constant 

vref : Reference voltage 

v : Terminal voltage 
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Figure 11. System response under scenario 1 with heavy loading condition, Solid (proposed-PSS), Dashed (PSO-PSS), Doted (C-PSS) 

 

 

 
 

Figure 12. System response under scenario 2 with light loading condition, Solid (proposed-PSS), Dashed (PSO-PSS), Doted (C-PSS) 
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Figure 13. System response under scenario 3 with nominal loading condition, Solid (proposed-PSS), Dashed (PSO-PSS), Doted (C-PSS) 
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