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Abstract- Integrated resource planning has been 

performed by electric companies, because of its 

multifarious benefits in power system operation. Demand 

Response Resources (DRRs) can be used as a virtual 

demand side power plant. DRRs are clustered to Incentive-

Based Programs (IBPs) and Time-Based Rate Programs 

(TBRPs). Precise modeling of DRRs helps the system 

operator to investigate the impact of responsive loads on 

the power system operation. A multi attribute decision 

making (MADM) methodology is presented to select a 

program which reflects Independent System Operator 

(ISO) perspectives. The cost-based unit commitment (UC) 

problem with an improved formulation is also introduced 

to investigate the impacts of DRRs on generation 

scheduling. The UC problem as a crucial challenge of 

system operator is solved using harmony search algorithm 

to determine the role of demand response in generation 

scheduling. The numerical studies are conducted on the 

conventional ten-unit test system to confirm the capability 

of the proposed structure. 

 

Keywords: Demand response (DR), Cost-Based Unit 

Commitment, Incentive-Based Programs (IBPs), MADM, 

Harmony Search (HS). 

 

I. INTRODUCTION 

Integrated resource planning considers a full range of 

feasible supply-side and demand-side options and assesses 

them against a common set of planning objectives and 

criteria [1, 2]. Demand-side resources can be defined as 

changes in electric usage by end-use customers from their 

normal consumption patterns in response to motivations 

form system operator. Recent evolutions of incorporating 

demand-side resources into the planning and operation of 

power systems confirms the important role of these virtual 

resources in future power systems [3]. Due to advances in 

metering and communication systems, demand response 

can provide important services for the ISO within a short 

time.  

The suggestion is to make it attractive for consumers to 

decrease their consumption during peak load periods [4]. 

Reviewing the previous literatures reveal a wide range of 

Demand Response Programs (DRPs) related studies. In the 

Federal Energy Regulatory Commission (FERC) 

description, DRPs are clustered to time-based rate 

programs and incentive-based programs [3]. In these 

programs, the consumer decreases its consumption when 

requested. The consumer profit are mainly from 

motivation provided by the operator. 

The cost-based unit commitment problem as a crucial 

challenge of ISO is studied in this manuscript to 

investigate the effect of implementing DRPs in the 

electricity market. The UC determines on/off status of 

power plants to satisfy the electricity demand [5, 6]. The 

best program should decrease the operation costs, while 

satisfying different constraints [5, 7]. Numerous methods 

have been used in recent papers for solving this problem. 

When the problem is middle or large size, deterministic 

techniques are not appropriate. Heuristic methods may 

have a number of advantages to handle such problem, 

while the major disadvantage of them is that they cannot 

assurance the best answer. Hence, hybrid methodologies 

have been introduced [8]. 

In this paper, the unit commitment with a different 

objective function is formulated considering demand 

response programs and, the harmony search (HS) 

algorithm is applied to solve such problem. Responsive 

load economic model is also developed in this manuscript. 

Economic models of responsive loads for DRPs have been 

presented in [9-13]. In the previous articles, the linear 

economic model of price responsive loads has been 

derived [14, 15].  

In this paper, a new nonlinear flexible model of IBPs is 

extracted using the concepts of demand elasticity and 

consumer utility function. This form is called flexible 

because the values of motivations are adjusted based on 

the level of demand. This paper is modeled the voluntary 

DRPs namely direct load control (DLC) and emergency 

demand response programs (EDRPs). Moreover, the 

system operator use the multi attribute decision making 

approach by handling a trade-off between different 

objectives with conflicting nature [16]. In this paper, the 

entropy method and TOPSIS method have been applied 

together to give an opportunity for the ISO to select the 

program with the highest priority that satisfies his desires. 

The conventional ten-unit test system is applied for the 

simulation studies to confirm the capability of the 

suggested framework.  
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The remainder of the paper is organized as follows: 

Section II provides a brief background of DRPs. Detailed 

mathematical formulation is explained in Section III. 

Section IV is devoted to the optimization algorithm. 

Section V conducts the numerical simulations. Finally, 

concluding remarks are drawn in Section VI. 
 

II. BACKGROUND OF DRPS 

DRPs can be classified as a set of system operator 

(usually ISO)-based programs that allow end users to 

provide interruptible load as a commodity in the electricity 

market. In FERC 2012 survey, DRPs are classified into 

two basic clusters: i) time based programs, and ii) 

incentive based programs. No penalty or incentive is 

contemplated for customer response in time based 

programs [17], while IBPs are categorized into three main 

clusters including voluntary, mandatory and market-based 

programs. More supplementary details about per type of 

DRPs and their benefits are provided in [3]. 

 

III. MATHEMATICAL FORMULATION 

Figure 1 shows the proposed framework for cost-based 

unit commitment with demand response resources. More 

explanation about this framework is expressed in the 

following. 

 

A. Nonlinear Flexible Load Model 

In order to assess the role of demand response 

programs on load profile, improvement of precise load 

models is essential. Schweppe presented the concept of 

price elasticity of demand in 1989, where customers would 

adjust their consumption depending on the electricity 

market price [18]. Kirschen showed the impact of this 

model on generation scheduling in an electricity market 

[19]. A linear responsive load has been modeled in [14, 

15]. In this paper, an exponential model of responsive 

loads is introduced which is more accurate than previously 

developed linear model. More explanations and 

clarification about the proposed DRP is provided in the 

following.  

Self-elasticity of demand can be defined as [20]: 

( ) ( )
( , )

( ) ( )

t D t
E t t

D t t

 


  

(1) 

The cross elasticity can be also formulated as [1]: 

( ) ( )
( , )

( ) ( )

j D t
E t j

D t j

 


  

(2) 

After implementing demand response programs, the 

consumers decrease their consumption as [1] 

( ) ( ) ( )DRD t D t D t  
 

(3) 

where, “Γ(t)”, is also introduced as [1]: 

( )
( ) {1,2... ... }

max{ ( )}

D t
t t T

D



  

 

(4) 

If A(t) [$] is paid to consumers as motivation for each 

kWh load reduction, the whole incentive can be formulated 

as following [1]: 

( ( )) ( ) ( )[ ( ) ( )]DR
np D t t A t D t D t t    

 
(5) 

 

 

 
 

Figure 1. Framework of implementing DRPs from the ISO perspective 

 

The total punishment can be also formulated as [1]: 

( ( )) ( ) ( ).{ ( ) [ ( ) ( )]}DR
mPEN D t t pen t IC t D t D t t     

 
(6) 

The superscripts n and m in Equations (5) and (6) can 

determine the impact of incentive and penalty in demand 

response programs.  If B(DDR(t)) be the utility of consumer 

during tth hour from the consumption of DDR(t) kWh of 

electricity, then the customer’s benefit, S(DDR(t)), for the 

tth hour can be presented as 

( ( )) ( ( )) ( ) ( )

( ( )) ( ( ) )

DR DR DR DRS D t B D t D t t

p D t PEN D t

   

   
 

(7) 

In order to maximize S(DDR(t)), we will have: 

( ( )) ( ( ))
( )

( ) ( )

( ( )) ( ( ))
0

( ) ( )

DR DR
DR

DR DR

DR DR

S D t B D t
t

D t D t

p D t PEN D t

D t D t

 
  

 

   
  

 
 

(8) 

The Equation (8) can be rewritten as: 

( ( ))
( ) ( ) ( ) ( ) ( )

( )

DR
DR

DR

n mB D t
t t A t t pen t

D t


   


 

(9) 

Here, the exponential utility function, B(DDR(t)) is 

considered as [18]: 

0( ( )) ( ) ( ) ( ) ( , ).

( ) ( )
. exp 1

( , ). ( )

DR

DR

B D t B t t D t E t t

D t D t

E t t D t

 

    
   

    

 (10) 

where, 

( ( ))
( ) ( ) ( , ).

( )

( ) ( ) 1
.exp .

( , ). ( ) ( , ). ( )

DR

DR

DR

B D t
t D t E t t

D t

D t D t

E t t D t E t t D t


 



   
   
   

 (11) 

From Equation (9) and Equation (11), it can be 

concluded that: 

( ) ( ) ( ) (t) 

( ) ( )
( ).exp

( , ). ( )

n m
DR

DR

t t A t pen(t)

D t D t
t

E t t D t

   

 
   

 

 

(12) 
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Hence, the single period responsive load model can be 

presented as:  

( ) ( ).

( ) ( ) ( ) ( ) 
. 1 ( , ).ln

( )

( )

DR

DR

n m

D t D t

t t A t t pen
E t t

t

t



     
  

   
 

(13) 

Using the cross elasticity definition, the multi period load 

model can be also formulated as:  

24

1

( ) ( ).

( ) ( ) ( ) ( ) ( )
. 1 ( , ).ln

( )

DR

DR

n m

j
j t

D t D t

j j A j j pen j
E t j

j




 
    
  

  
 


 (14) 

By combining Equations (13) and (14) and considering 

“” as the penetration rate of demand response programs, 

we will have: 

24

1

( ) ( ).

( ) ( ) ( ) ( ) ( )
. 1 ( , ).ln

( )

DR

DR

j

D t D t

n mj j A j j pen j
E t j

j







     
   

   


 (15) 

 

B. Procedure of DRPs Sorting 

One of the main aims of system operator is prioritizing 

different programs [21]. In the proposed strategy of this 

paper, the attributes are weighted by means of entropy 

method [22]. A decision matrix, i.e. De, can be presented 

as [15]: 

1,1 1,

,1 ,

                               Attribute 1      Attribute

Alternative 1 ...

... ... ...

...Alternative

NAT

e

NAL NAL NAT

 NAT

D

NAL

 

 

 
 

  
 
 

 

(16) 

Each element of (16) can be normalized as [15]: 

/

1

NAL

lk lk lk

l

P  


 

 

(17) 

Thus, wk can be achieved as [15]: 

.

.

1

1

1

1 1

1 (ln ) [ ln ]

{1 (ln ) [ ln ] }

NAL

l l k

l
k NAT NAL

l l k

k l

NAL P P

W

NAL P P







 

 



 



 

 

(18) 

Considering the importance factor of each attribute 

(λk), Equation (18) can be modified as 

1

k k
k NAT

k k
k

W
IW

W









 

(19) 

In Equation (19), lower weights urge that the impact of the 

attribute is similar for all of the alternatives and its 

importance is negligible for decision [15].  

In this stage, system operator prioritize DRPs using 

TOPSIS methodology [23]. Using the TOPSIS procedure, 

the distances between each alternative and the ideal or anti-

ideal solution should be evaluated [15]. The appropriate 

alternative should have a minimum distance to the ideal 

point and maximum distance to the anti-ideal point [15]. 

TOPSIS procedure is provided in details as fallows. 

i. Weighted normalized decision matrix can be determined 

as: 

1

lk
lk NAL

lk

l

P








 

(20) 

ii. The ideal and anti-ideal solutions should be determined 

in this stage. The ideal solution, v+
k, is the maximum value 

for the positive criterion and the minimum value for the 

negative criterion in each column. Similarly, the anti-ideal 

solution, v-
k, is the minimum and the maximum values for 

the positive and the negative criteria in each column, 

respectively [15].  

iii. Cl factor can be calculated as [15]: 

2

1

2 2

1 1

( )

( ) ( )

0 1 1,.....

NAT

lk k

k

NAT NAT

lk k lk k

k k

l

l

v v

C

v v v v

C l NAL





 

 





  

   



 
 (21) 

Finally, the alternatives are sorted according to the Cl 

value.  

 

C. Unit Commitment with Demand Response Programs 

 
C.1. Objective Function 

Direct load control and emergency demand response 

programs are implemented in this paper. Here, the amount 

of incentive and penalty are considered equal to “A” 

$/kWh and zero $/kWh, respectively. The objective 

function for the generation scheduling problem with 

aforementioned DRPs can be presented as: 

1 1

,[ ( ) ( , )
min

( , ) ( , )(1 ( , 1)) ( ( ))

N T

i t

iF t u i t

SUC i t u i t u i t p D t

 

 
 

 
 
     



 

(22) 

More clarifications about Equation (22) is explained in 

the following. The operation cost function can be 

presented as [26]: 

( , ) ( ) ( ) ( , ) ( ) ( , )2F i t a i b i P i t c i P i t  
 

(23) 

In Equation (23), a(i), b(i) and c(i) are fuel cost 

coefficients. u(i,t) presents the on/off status of unit i at tth 

time interval, u(i,t)=0 if unit i is off, u(i,t)=1 if it is on at t, 

N is the total number of power generating units to be 

committed, and T is the time period. 

In Equation (22), SUC, HSC and CSC represent the 

start-up cost, hot start-up costs and cold start-up costs, 

respectively: [1] 

( , )

( ), if ( , ) ( ) ( , ) ( )

( ), if ( ) ( , ) ( )

D ON D

ON D

SUC i t

HSC i T i t MD i T i t CST i

CSC i MD i T i t CST i



   


 

 (24) 

where MD(i)ON is the duration which the ith unit is 

continuously on and TD(i,t) is the minimum down-time of 

unit i. 

The last term of Equation (22) is the value of incentive for 

implementing DRPs and is formulated as Equation (5). 
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C.2. Constraints 

Different constraints should be considered in the 

proposed problem, which are presented in the following.  

- Power supplied from committed units and demand 

response resources must satisfy the load demand [2]. 

1

24

1

( , ) ( , ) (1 ) ( ) ( ).

1 ( , ).

,
( ) ( ) ( ) ( ) 

.ln
( )

N

i

j

n m
DR

P i t u i t D t D t

E t j

i t
j j A j j pen(j)

j

 




  

 
 

 
  

    
     





 

(25) 

- The generation amount of each power plant should be 

within certain limits, as [2]: 

( , ) ( , ) ( , ) ( , ) ( , ) , 1P i t u i t P i t P i t u i t i N t T     

 

(26) 

- RDR(i) and RUR(i) represent the maximum allowed 

decrease and increase of the output of unit i occurring in 

one hour, respectively. 

( ) ( , ) ( , 1) ( ) , 1RDR i P i t P i t RUR i i N t T          (27) 

- The minimum up/down time constraints can be defined 

as following [26]: 

( ) ( )ON UMD i T i i N  
 

(28) 

( ) ( )OFF DMD i T i i N  
 

(29) 

- Spinning reserve is considered as a deterministic amount 

for improving the reliability of power system and 

decreasing the amount of load shedding which can be 

given by: 

1

24

1

( , ) ( , ) (1 ) ( ) ( )

1 ( , ).

( ) ( ) ( ) ( ) 
ln

( )

, 1

( )
N

i

DR

j

P i t u i t SR D t D t

E t j

n mj j A j j pen(j)

j

i N t T

t  




   

 
 

 
 

    
     

   





 

(30) 

 

IV. OPTIMIZATION TECHNIQUE 

In this paper, the harmony search (HS) algorithm is 

used to handle the UC problem. Figure 2 represents the 

hierarchy of harmony search algorithm [24, 25]. 

The details of HS algorithm to unit commitment 

problem can be explained as follows. 

Step 1. In step 1, the optimization problem and HS 

algorithm parameters such as size of harmony memory 

(HM), harmony memory considering rate (HMCR) and 

pitch adjusting rate (PAR) should be initiated [26].

 

 
 

Figure 2. Optimization procedure of the HS algorithm 

 

Step 2. In this step, the HM matrix that the number of its 

columns is equal to the number of units and each row 

represents a harmony vector, is initialized randomly. Each 

variable in HM represent on/off statuses of generators. 

Since on/off statuses of generators are represented by 1 or 

0, respectively, therefore variables in HM are discrete [26]. 

Step 3.  At this step, the units’ constraints are checked. For 

preventing infeasibility of the scheduling at next 

sequential hours of time horizon, it is assumed that each 

harmony vector is eligible for that hour then with this 

scheduling, next hours are considered. If Equation (26) 

with this scheduling considering min up/down time of 

units for next hours is satisfied for all hours,  the harmony 

vector do not need any modification and if not, some 

correction is made for that harmony vector. More 

explanations are provided in [26]. 

Step 4. In this step, a lambda iteration method has been 

used to specify the economic generation of power plants. 

Step 5. In this stage, Equation (22) is calculated based on 

the results of economic dispatch considering start-up costs 

for units that will be turned on at this hour [26]. 

Step 6. At this step, new harmony vectors are improved 
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from the HM based on memory considerations, pitch 

adjustments, and randomization. Since UC is a discrete 

optimization problem, for generating new harmony 

vectors discrete variable form of HS algorithm is used 

here. The next stages are modifying and computing the 

objective function for determining new harmony vectors 

[26]. 

Step 7. New harmony vectors will be compared with 

harmony vectors in HM from the view point of the 

objective function. The result of this comparison is that 

only the stronger vectors from both harmony vectors 

stored in HM and new harmony vectors sets can be 

remained [26]. New HM is updated by replacing stronger 

vectors instead of weaker vectors, which will be removed.  

Step 8. The algorithm will be stopped when the 

termination criterion is satisfied. Otherwise, steps 6 and 7 

should be repeated. The maximum number of 

improvisation should be selected intensively based on the 

size of the problem and the desired time. More 

explanations about the HS algorithm can be found in [26]. 

 

V. SIMULATION RESULTS 

The conventional ten-unit system is applied as a case 

study. Figure 3 represents the aforementioned load curve 

which is divided into three different periods, namely valley 

period (00:00 am–5:00 am), off-peak period (5:00 am–

9:00 am & 14:00 pm–19:00 pm) and peak period (9:00 

am–14:00 pm & 19:00 pm–24:00 pm) [2]. The 

implementation potential of demand response program is 

considered to be 70% and 50%. Several programs have 

been called as indicated in Table 1 to accentuate the 

impacts of price elasticity of demand and incentives values 

on the load curve. The price elasticity of demand is 

considered as Table 2. 
 

 
 

Figure 3. Conventional ten-unit test system load curve [2] 
 

 

Table 1. Statement of demand response programs  
 

Programs 

 = 

0.7, 0.5 

Program 

No 

Incentive 

value 

($/MWh) 
Price elasticity 

m, n = 1 

DLC/ 

EDRP 

 

1 4 As Table 2 

2 7 As Table 2 

3 10 As Table 2 

4 4 As 2  value of Table 2 

5 7 As 2  value of Table 2 

6 10 As 2 value of Table 2 

 
Table 2. Price elasticity of demand 

 

 1-5 6-9 10-14 15-19 20-24 

1-5 -0.08 0.03 0.034 0.03 0.034 

6-9 0.03 -0.1 0.04 0.03 0.04 

10-14 0.034 0.04 -0.19 0.04 0.01 

15-19 0.03 0.03 0.04 -0.11 0.04 

20-24 0.034 0.04 0.01 0.03 -0.19 

 

A. Studying the Effect of Proposed DR Model on the 

Load Curve 

The DR incentive value as a economic index is 

calculated for each of programs by implementing 

programs. Furthermore, several technical indices namely 

peak reduction, electrical energy consumption, load factor, 

and peak to valley distance are evaluated for each program. 

Tables 3 and 4 compare the performance of load model 

versus customers’ participation level, value of incentive 

and elasticity. 

Base Case: The first rows in Tables 3 and 4 present the 

base case with nominal load curve (Figure 3), where no 

demand response program is called. In this case, as shown 

in Table 4, the load factor is equal to 75.27% which will 

be increased after implementing some DRPs of Table 1. 

The energy consumption is 27,100 MWh which is 

considerably more than the other programs.  

Program 1: Here, system operator pays 4 $/MWh as 

motivation for decreasing the load. As shown in Tables 3 

and 4, in program 1, the maximum peak reduction (9.35%), 

the maximum increase in load factor (7.89%) and the 

minimum distance between peak and valley (635.02 MW) 

are achieved when =0.7 in compare with the other 

programs. According to Table 3, for this case, the 

minimum DR incentive value is 3,352.8 $ for =0.5 in 

compare with the other programs. 

 

 

Table 3. Economical and technical comparison of the programs 
 

Peak Reduction 

(%) 

Peak 

(MW) 

DR Incentive Value 

($) Program 

No 

Programs 

 
=0.5 =0.7 =0.5 =0.7 =0.5 = 0.7 

- - 1500 1500 - - Initial load Base case 

6.68 9.35 1,399.81 1,359.7 3,352.8 4,693.9 1 

DLC/ 

EDRP 

9.05 7.34 1,364.18 1,389.85 9,758.9 13,662.59 2 

7.5 5.16 1,387.48 1,422.47 19,002.2 26,603.17 3 

8.19 6.13 1,377.17 1,408.04 6,705.6 9,387.86 4 

4.77 1.35 1,428.36 1,479.7 19,517.9 27,325.18 5 

1.67 -2.99 1,474.9 1,544.95 38,004.5 53,206.3 6 

 

 

 

Hours 
Hours 
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Table 4. Technical comparison of the programs 
 

Peak to Valley 

(MW) 

Load Factor 

(%) 

Energy Consumption 

(MWh) Program 

No 

Programs 

 
=0.5 =0.7 =0.5 =0.7 =0.5 = 0.7 

800 800 75.27 75.27 27,100 27,100 Initial load Base case 

682.16 635.02 79.39 81.21 26,674.7 26,504.6 1 

DLC/ 

EDRP 

653.05 714.27 80.62 78.27 26,392.7 26,109.8 2 

708.62 792.06 78.49 75.42 26,136.01 25,750.4 3 

684.04 757.65 79.41 76.67 26,249.55 25,909.3 4 

806.11 928.54 74.92 70.73 25,685.49 25,119.6 5 

 

Program 2: As it is shown in Table 4, in this program, a 

maximum load factor (80.62%) is determined for =0.5. 

As presented in Table 3, by decreasing of customers’ 

participation level, the load reduction value will be 

improved (9.05% for =0.5). The maximum distance 

between peak and valley (714.27 MW) is accomplished 

when =0.7. 

Program 3: As it can be seen from Tables 3 and 4, for 

=0.5, the peak reduction index is increased with a 

maximum value of 7.5% and minimum distance between 

peak and valley (708.62 MW) and maximum 4.28% 

increase in load factor are achieved in compare with the 

base case. After implementing this program, the maximum 

energy consumption is 26,136.01 MWh for =0.7 which 

is considerably decreased in compare with the base case. 

Program 4: In this program, we assume the elasticity 

values as double of the values denoted in Table 2. Here, 

the minimum distance between peak and valley (684.04 

MW) is achieved for  =0.5 which is increased in 

comparison with program 1 with the single value of 

elasticity. As shown in Table 4, the maximum load factor 

(79.41%) and maximum energy consumption (26,249.55 

MWh) are achieved for participation level of 0.5 in 

compare with the base case. In this program, the 

customers’ energy consumption is decreased at least 

3.14% when =0.5. 

Program 5: In this case, we assume 7 $/MWh as incentive 

and the elasticity values as double of program 2. By 

applying the proposed model (Equation (15)) on the initial 

load curve, maximum peak reduction is obtained (4.77%) 

when =0.5. In this case, the value of energy consumption 

is decreased in comparison with program 2, which is in the 

relation with the sensitivity of the results versus elasticity. 

On the other hand, the value of load factor is decreased at 

least 0.46% when =0.7 and the distance between peak 

and valley is increased 1.01% for =0.5 in comparison 

with the base case which can be explicate as the following. 

In this case, the value of elasticity is increased and hence, 

the considerable amount of consumption is transferred 

from the peak period to the off-peak or valley periods. 

With a significant approximation, the peak period and off-

peak period substitute their place with each other after 

implementing program 5.  

Program 6: In this case, the value of load factor is 

decreased which is in the direct relation with the values of 

elasticity and incentive. According to Tables 3 and 4, the 

peak value of load curve (for =0.7) and distance between 

peak and valley are increased after implementing this 

program. In program 6, the value of load factor is 

decreased at least 5.46% for =0.5. The result of this 

program show the importance of intelligent implementing 

of DRPs from the ISO point of view.  

In the next section, we will discuss more about the 

importance of customers’ participation level, value of 

incentive and price elasticity of demand in each of DRPs 

from the view point of ISO. 

 

B. Prioritizing of DRPs 

Table 5 presents the number of different programs and 

scenarios. For improving the load profile characteristics as 

well as customer’s benefit, following attributes are 

considered: “peak reduction, energy consumption, load 

factor, distance between peak to valley and DR incentive 

value” [15]. Accordingly, the decision matrix De is 

established using Equation (16) with the results of Tables 

3 and 4. The decision matrix represents the performance of 

each program for each attribute [15]. Then, the attributes 

are weighted by the entropy method (using Equations (17) 

and (18)). Table 6 shows the calculated weights of the 

attributes.

 

Table 5. Defining scenarios according to the value of  
 

Program NO 1 2 3 4 5 6 

 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 

Scenario NO 1 2 3 4 5 6 7 8 9 10 11 12 

 

Table 6. Weights of attributes 
 

Attribute Peak reduction Energy consumption Load factor Peak to valley DR Incentive Value 

Weight 0.4129 0.0006 0.0038 0.0278 0.5549 

 
Table 7. Improved weights of attributes 

 

Attribute Peak reduction Energy consumption Load factor Peak to valley DR Incentive Value 

Improved weight 0.6655 0.0003 0.0061 0.0299 0.2982 
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Since system operator has the main task of maintaining 

security of the system therefore the weights of attributes 

should be acceptable from its point of view, otherwise 

system operator can improve the weights based on its 

decision [15]. For example, peak load reduction increases 

the reserve capacity, which will result in increasing the 

system security margin. According to the above 

discussion, system operator may consider the importance 

factor of attributes as below [15]: 

 0.3 ,0.1 ,0.3,0.2 ,0.1      1,2,3,4,5     NAT NAT  

Based on the above importance factors, the improved 

weights of attributes are obtained using Equation (19) and 

can be seen in Table 7 [15]. 

Using the TOPSIS methodology, the priorities of 

programs are determined and the results are depicted in 

Figure 4. Hence, by implementation of scenario 1 with the 

highest priority, system operator will obtain the desired 

load profile and also achieves relative satisfaction of 

consumers. Investigation in the above results reveals that 

for various policies, different improved weights of 

attributes will result in different priorities of programs [15].  

 

 
 

Figure 4. Priority of scenarios from the ISO point of view 

 

C. Cost-Based Unit Commitment Considering Demand 

Response Programs 

In this case, the basic system includes ten units with a 

scheduling time horizon of 24 hours. The generating units’ 

data are given in [6]. Spinning reserve is held as 10% of 

the scaled load demand in this case. In the base case 

without considering demand response programs, the value 

of operation cost is obtained equal to 563,977$ using the 

harmony search algorithm. Table 8 presents the units’ 

output powers for 24-h time horizon without implementing 

DRPs. 

After applying the proposed DR economic model and 

using the results of MADM method which was discussed, 

the total operation cost of scheduling generation units is 

decreased after implementation of DRPs as shown in Table 

9. As expected, with raising of elasticities, the total value 

of incentive which should be paid by the ISO is increased 

by more participation of customers in DRPs. As it is shown 

in Table 9, the total operation cost of scenarios 7,8 and 9 

is considerably less than scenario 1 but, we assume that 

ISO implements the first scenario with the highest priority 

(98.57%).  

By applying final DR model (Equation (15)), the load 

curve can be indicated as Figure 5 after implementing 

scenario 1. As shown in Figure 5, some customers transfer 

their consumption from the peak period to the off-peak or 

valley periods and some loads could be only on or off. 

After implementing scenario 1, the total operation cost of 

scheduling units is decreased and is equal to 543,457.69 $. 

On the other hand, the total value of incentive for 

participation of customers in scenario 1 is equal to 4,693.9 

$ which should be paid by the ISO. Hence, the total cost of 

scenario 1 is equal to 548,151.59 $. Comparing the UC 

cost in this case with the result of base case (without 

implementing DRP) shows that the operation cost is 

decreased about 15,825.41 $. 

 
 

Table 8. Unit output power for the conventional ten-unit test system without implementing demand response programs 
 U

n
its 

Hours 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 

2 245 295 370 455 390 360 410 455 455 455 455 455 455 455 455 310 260 360 455 455 455 455 420 345 

3 0 0 0 0 0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 0 0 0 

4 0 0 0 0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 0 0 0 

5 0 0 25 40 25 25 25 30 85 162 162 162 162 85 30 25 25 25 30 162 85 145 25 0 

6 0 0 0 0 0 0 0 0 20 33 73 80 33 20 0 0 0 0 0 33 20 20 0 0 

7 0 0 0 0 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 25 25 25 0 0 

8 0 0 0 0 0 0 0 0 0 10 10 43 10 0 0 0 0 0 0 10 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 

Table 9. Comparisons of total cost for different scenarios  
 

Priority 1-6 Priority 7-12 

Scenario 

 No 

Cost of Generating 

Units ($) 

Total 

Incentive ($) 
Total Cost ($) 

Scenario 

No 

Cost of Generating 

Units ($) 

Total 

Incentive ($) 
Total Cost ($) 

Initial Load 563,977 - 563,977 Initial Load 563,977 - 563,977 

1 543,457.69 4,693.9 548,151.59 6 537,007.52 19,002.2 556,009.72 

4 545,349.86 9,758.9 555,108.76 7 532,956.67 9,387.86 542,344.53 

2 550,126.42 3,352.8 553,479.22 9 516,822.02 27,325.18 544,147.2 

3 536,508.22 13,662.59 550,170.81 10 529,348.10 19,517.9 548,866.0 

8 540,706.31 6,705.6 547,411.91 11 500,385.8 53,206.3 553,592.1 

5 533,410.79 26,603.17 560,013.96 12 511,646.8 38,004.5 549,651.3 
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Figure 5. The impact of scenario 1 on the load profile 

 

The output power of generation units is given in Table 

10 after implementing scenario 1. The shaded boxes show 

the difference in the output power of generating units 

between this case and the base case. Table 11 shows the 

commitment status of units after implementing scenario 1 

with highlighted hourly statuses which are different from 

the base case. The following reasoning applies to 

demonstrate the variation of the unit scheduling which is 

directly related to the limitations of generating units in the 

presence of DRRs. After implementing DRPs, unit 5 is off 

in peak periods (hours 23- 24). It means that in these hours, 

the DRRs are used for satisfying the predetermined 

demand. 

 

Table 11. Unit schedule after implementing scenario 1 
 

Total Cost =548,151.59 $ 

Unit Hours (1-24) 

1-2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

As shown in Table 11, in hour 9, unit 7 is off and units 

8 and 9 which are more expensive in comparison with unit 

7 are in the on status. It can be concluded that unit 7 has a 

minimum up time of three hours and starting up of this unit 

in hour 9 causes this unit to be on in the peak period and 

increasing of the generation cost, hence this unit is not 

called for minimizing the total value of objective function. 

In this state, the expensive units are not called to satisfy 

the demand due to reduction in customers’ demand after 

implementing demand response program. For example 

unit 10 which is the most expensive unit is not committed 

in this case. 

 

Table 10. Unit output power for the ten-unit case considering demand response program 
 

U
n

its 

Hours 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 

2 270 321 400 374 425 406 455 455 455 455 455 455 455 413 455 354 302 386 455 455 438 387 361 270 

3 0 0 0 0 0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 0 0 0 

4 0 0 0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 0 0 

5 0 0 25 25 25 25 28 60 144 79 99 145 74 25 55 25 25 25 60 79 25 25 0 0 

6 0 0 0 0 0 0 0 20 20 20 20 20 0 0 0 0 0 20 20 20 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 25 25 25 25 25 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

VI. CONCLUSION 

In this manuscript, demand response programs have 

been studied as a virtual power plant which has potential 

to present substantial benefits in the form of improved 

economic efficiency in the electricity markets. Based on 

the price elasticity of demand and customers’ benefit 

function, a new nonlinear flexible economic model of 

incentive responsive loads has been derived for demand 

response programs. In the proposed model, the values of 

motivation and punishment are adjusted based on the stage 

of consumption.  

This model can be used for the purpose of improving 

the load profile characteristics as well as satisfaction of 

customers. Prioritizing approach of demand response 

programs was presented based on MADM techniques 

including entropy and TOPSIS methods. Independent 

system operator could prioritize different programs and 

would choose the best program considering its 

perspectives. Hence, ISO implements the scenario with the 

highest priority.  

Furthermore, the cost-base unit commitment as a 

crucial challenge of ISO was studied using the harmony 

search algorithm to emphasize the benefits of 

implementing demand response programs in electricity 

markets. The numerical studies have been conducted on 

the conventional ten-unit test system. The results presented 

demonstrate the benefits of customers’ response to DRP of 

ISO. 

 

NOMENCLATURES 

( )A t : Incentive of demand response program at tth hour 

( ), ( ), ( )a i b i c i : Fuel cost coefficients of unit i 

( ( ))DRB D t : Customer's income of tth hour after implementing 

DRPs 

lC : Priority coefficient in TOPSIS method 

( )CSC i : Cold start-up cost of unit i 

( )CST i : Cold start-up time of unit i 

eD : Decision matrix 
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( )D t : Power demand at tth hour 

( )DRD t : Power demand of tth hour after implementing DRPs 

( , )E t j : Cross elasticity 

( , )E t t : Self elasticity 

( , )F i t : Fuel cost function of a unit i 

( )HSC i : Hot start-up cost of unit i 

i : Denotes a unit 

( )IC t : Contract level of Incentive-based programs of tth hour 

ln : Natural logarithm function 

( )ONMD i : Duration during which the unit i is continuously on 

( )OFFMD i : Duration during which the unit i is continuously off 

,n m : Coefficients to strengthen the cause of punishment and 

reward in IBPs 

N : Number of units 

NAL : Number of alternatives 

NAT : Number of attributes 

( ( ))PEN DD t : Total punishment for consumers. 

( )pen t : Penalty of tth hour 

( ( ))p D t : Total incentive for customers’ participation in DRPs 

at tth hour 

( , )P i t : Generation of unit in tth hour 

( , )P i t : Maximum generating capacity 

( , )P i t : Minimum generating capacity 

( )RDR i : Ramping down limit of a unit 

( )RUR i : Ramping up limit of a unit 

( , )SUC i t : Start-up cost of unit i 

( ( ))DRS D t : Customer's benefit from implementing DRPs in tth 

hour 

( , )DT i t : Minimum down-time of unit i 

( )UT i : Minimum up-time of unit i 

T : Number of hours for the scheduling period 

( , )u i t : Unit status indicator where 1 means on and 0 means off 

lkV : Weighted normalized decision matrix 

kv : Ideal solution 

kv : Anti-ideal solution 

W : Weighting of attributes 

lk : Performance of the lth alternative regarding kth attribute 

k : Decision maker’s importance factor 

( )t : Spot electricity price of an hour 

( )t : Demand ratio parameter of tth hour 

 : Potential of DR programs implementation 
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