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Abstract- In this paper, a single phase STATCOM 

constructed of a voltage source converter (VSC) is 

introduced. The STATCOM DC capacitor is shunted by a 

harmonic filtering circuit for smoothing its voltage profile. 

The current of the devised STATCOM is controlled via a 

new controller addressing the STATCOM voltage angle in 

the range of ±5.70 with respect to the AC input phase 

voltage. This small range of angle control makes the 

STATCOM offer linear and continuous response to pure 

reactive current demand without association of harmonics 

or exchange of active power with the AC source. This 

STATCOM is designed and tested on PSpice. The 

simulation results of this STATCOM have verified its 

design methodology.    

 

Keywords: Energy Saving, Harmonics, Power Quality, 

STATCOM, Static VAR Compensator, VAR. 

 

1. INTRODUCTION                                                                         

Static VAR compensators SVCs help to save energy, 

keep constant AC voltage profile, control the parameters 

of the AC power systems for the purposes of power 

stability, and reduce losses of transmission lines in order 

to operate them closer their maximum ratings. SVCs are 

very essential in power system networks due to their 

exploitations in applications requiring exchange of VAR 

and real power with the AC grid. The exchange processes 

with the AC networks are usually accomplished via small 

reactors. Such processes rather cause injection of 

spreading spectrums of harmonic currents revealing in the 

AC source side [1]. Many works were conducted to 

decrease the effects of these current harmonics associating 

such SVCs. Multilevel technology was employed in [2] for 

generating to some extent sinusoidal voltage from an 

inverter used in these compensators.  

In [3], a power converter based static compensator was 

built of cascaded H-bridges and provided with a control 

strategy for balancing the DC-BUS voltage and solving the 

balancing problems via keeping equally distributed VAR 

among all the H-bridges of the devised converter. Despites 

the load might absorb reactive and harmonic currents from 

the AC grid, an active power filter was suggested by [4] to 

be capable of balancing the AC current fundamental at 

unity power factor.  A STATCOM in [5] was linearized 

around a certain point of operation via a model based on a 

set linearized nonlinear equation. Using a triangular carrier 

switching strategy, a 2-level inverter governed by phase-

shifted multicarrier unipolar pulse width modulation was 

proposed by [6]. This control scheme was feasible to be 

extended for cascaded multilevel converters.  

A synthesized arrangement of multilevel inverters was 

built in [7] using multiples of single and 3-phase schemes.  

This arrangement leads to the construction of converters 

having higher voltage levels. An equivalent 3-phase, star-

connected AC supply was attached to a STATCOM, which 

was required to be conditioned such that zero average 

active power can be produced in each phase under 

unbalanced supply voltages or unbalanced compensating 

currents [8].  

A reduced-rating voltage-source inverter-based SVC 

was proposed by [9] in a 3-phase 4-wire system. This SVC 

was attached to a zig-zag distribution transformer to 

construct a DSTATCOM, which was employed to 

accomplish power-quality improvement including 

harmonics cancellation, load balancing, VAR 

compensation, and voltage compensation at point of 

common coupling. To accomplish better operation in AC 

power systems with unbalanced and distorted medium-

voltage characterized by large-currents, a transformer less 

four-leg STATCOM devised from cascaded half-bridge 

converters was proposed by [10], while for voltage and 

current compensation in [11], Instantaneous Power Theory 

was employed for real-time computation and control for a 

3-phase STATCOM. A STATCOM was devised in [12] to 

govern the exciter of an induction generator. A synthetic 

algorithm was adopted in this work to specify four 

controllers for dc voltage, ac voltage, ac reactive current, 

and ac active current. With suitable design of eigen 

structure in the STATCOM state variables, reactive and 

active currents were driven using new respective modes.  

An experimental model of FACTS designed on the 

basis of VSC topology was introduced by [13]. The model 

provided an effective solution to poor power quality and 

the problem of AC to DC power transformation 

requirements in power system networks. The design 

considerations of the DC capacitor and the coupling 

inductor of the STATCOM in power system networks 

were analyzed in [14]. Amplitude and phase control 

schemes were employed as a basic control strategy for the 

STATCOM starting from modelling the STATCOM 
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system through frequency domain and ending with the 

effects of the DC side capacitor and coupling inductor on 

the filtering characteristics and the stability of the 

STATCOM.  

The work introduced by [15] studied different control 

schemes concerning DSTATCOMs, which are intended to 

solve various power quality problems in distribution 

power systems. A computer simulation was carried out in 

[16] on a STATCOM connected in delta form using a 

multilevel converter built of cascaded H-bridges. The 

STATCOM was exploited for power factor correction and 

load balancing of unbalanced three-phase load in a 

distribution network. Feed-forward compensation 

equations were derived for the STATCOM using the 

method of symmetrical components.  

A work in [17] presented a comprehensive 

methodology to obtain the support of the VAR capability 

and its associated costs concerning single- and two-stages 

PV farms throughout the operation of daytime. Results 

verified that the employment of two-stage PV farms was 

capable of expanding the VAR support capability for low 

irradiances compared to single-stage PV farms. An 

analysis modality on the basis of the theory of magnitude-

phase dynamic for STATCOMs in isolated power systems 

was introduced by [18]. In this work, the stability margin 

was greatly decreased when a load was connected to an 

isolated power system due to the disadvantages of the self-

excited induction generators.  

The planning framework of a distribution system 

related to the flexible electric vehicle loads was discussed 

in [19]. The hosting capability of the electric vehicle loads 

on distribution networks was enhanced for maintaining 

better power quality, which was a pre-requisite for 

increasing the engagement of the power consumers. A 

phase angle of a single-phase STATCOM was modeled 

according to its structure in [20] to address the unknown 

external disturbances and its dynamics, so that the external 

disturbances and modeling uncertainties can be realized 

without using approximations for functions.  

A work in [21] introduced the employment of 

STATCOMs in VAR compensation to enhance the 

capability of the Fault Ride-Through and accomplish 

improvement to the dynamic performance of power 

systems attached to PV/wind hybrid during the transient 

disturbances of the grid. A STATCOM is imperative to 

accomplish constant voltage stability at the transmission 

line ends. The mechanisms of VSC schemes with the 

methodologies of switching frequency control are broadly 

used to achieve VAR compensation [22]. The performance 

of a STATCOM and Double Fed Induction Generator 

(DFIG) in a transmission system was studied by [23]. The 

speed of induction generator rotor is always changing in a 

nonlinear manner with respect to wind speed. Under such 

a situation, the system performance is disturbed.  

The integration of the DFIG and the STATCOM 

system can stabilize the profile of the system voltage and 

enhance the flexible power flow in a transmission system. 

A peak-value control of dc voltage is usually proposed for 

supporting the use of a smaller dc capacitance for single-

phase VSC-based STATCOM.  

Although such a kind of control was verified to operate 

in a stable manner under many conditions, [24] revealed 

that this control strategy will suffer from severe small-

signal stability issues under non-ideal system conditions 

than the traditional methods represented by controlling the 

average dc voltage.  

A two-stage converter built of single-phase H-bridge 

and a DC-DC converter was dedicated in [25] for PV 

applications purposed due its high voltage gain 

characteristics. This configuration is characterized by 

minimized switches voltage stresses on the DC-DC side. 

A three-phase VSC having twelve switching devices and 

equipped with hysteresis band controller was proposed in 

[26] for voltage control and harmonic minimization. The 

proposed topology converter had rapid transient response 

toward voltage distortion.  

In this paper, a single-phase harmonic-free linearly 

controlled voltage source converter based STATCOM 

equipped with an open loop current controller is 

introduced. The STATCOM is built of an H-bridge voltage 

source converter loaded by a DC capacitor equipped with 

a smoothing harmonic filtering circuit and exchanges 

reactive power with the AC source via harmonic 

suppressing reactor. The STATCOM current controller is 

designed on the basis of open loop control of the 

STATCOM angle in a preassigned linear region of 

operation. 

 

2. THE PROPOSED STATCOM 

Figure 1 shows the proposed STATCOM. It is built of 

a full H-bridge voltage source converter having a 

composite DC link and a series reactor to exchange VAR 

with the AC source. The series reactor is represented by 

the series combination LSRS, where LS is its self-inductance 

and RS is its self-resistance. The DC link is built of a DC 

capacitor CDC and filtering circuit represented by LDCF, 

CDCF, and RDCF to smoothen the DC voltage profile of CDC. 

RDCF represents the self-resistance of the reactor LDCF. The 

filtering circuit resonates at twice the AC source frequency 

f.  

 

 
 

Figure 1. Power circuit of the proposed STATCOM 

 

aci

DCV

+

−

STv



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 52, Vol. 14, No. 3, Sep. 2022 

 38 

The voltage source converter is driven by the insulated 

gate bipolar transistors IGBTs, which are T1, T2, T3, and 

T4. These IGBTs are provided with D1, D2, D3, and D4 the 

as diodes for free-wheeling purposes and controlled using 

SPWM. The triggering mechanism of the IGBTs T1 and T3 

is shown in Figure 2. The triangular waveform vTRI 

represents the carrier signal of SPWM and vMD represents 

its modulating signal. The modulating signal vMD is a 

sinusoidal analog voltage running at the same AC supply 

frequency f of the voltage vac and shifted from it by a small 

angle β. Where, β is the STATCOM angle and varies in a 

linear region of ±0.1 rad. +ATRI represents the amplitude or 

the maximum level of vTRI, while -ATRI represents its 

maximum negative level. The carrier signal vTRI is running 

at a carrier frequency fTRI, which should be very much 

greater than the AC source frequency f, which represents 

the running frequency of the modulating signal vMD.  VT1 

and VT3 are the triggering signals of the IGBTs T1 and T3, 

respectively. The voltage vST represents the H-bridge input 

voltage, which is directly proportional to the capacitor DC 

voltage VDC. ω is the AC source angular frequency and is 

equal to 2πf. 

 

 
 

Figure 2. The STATCOM sinusoidal pulse width modulation 

 

According to Figure 2, if VDC is kept constant then vST 

will be given by 

1 3

5

T T
ST DC

V V
v V

− 
=  

 
   (1) 

where, the number 5 in the above equation stands for the 

maximum positive level of the triggering signals VT1 and 

VT3. The modulating signal vMD can be expressed by 

( )sinMD MDv A t = −    (2) 

where, AMD is the amplitude of vMD. Figure 3 shows the 

generated voltage vST of the H-bridge VSC during a certain 

one cycle of vTRI. In this figure, the carrier signal frequency 

fTRI is very much greater than the modulating signal 

frequency f. For a certain value of m, vST average 

throughout vTRI one cycle duration TTRI is referred to as 

vSTa, which can be given by 

( )

2 4

1 3

' '

' '

1
' '
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t t
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TRI t t
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v V dt V dt
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mV t 

 
 = + =
 
 

= −

 
   (3) 

where, m is modulation index and it is defined by 

MD

TRI

A
m

A
=    (4) 

To make Equation (4) applicable over the carrier signal 

profile, kTTRI is substituted for t and 2 π/T for ω. Where, T 

is the time duration of the modulating signal and k=1, 2, 3, 

and so on. Consequently, it can be written 

2
sin
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= − =  

   

 
= − 

 

   (5) 

where, the number N is given by 

  
TRI

T
N

T
=    (6) 

The voltage vSTa shows sinusoidal profile in phase with 

vMD during its variation with ωt. This implies that the 

average voltage profile of vST shows a fundamental voltage 

referred to as vST1, which can be expressed by 

( )1 sinST DCv mV t = −    (7) 

Supposing that the series reactor of the STATCOM 

eliminates all the components of the harmonics, then the 

STATCOM r.m.s current fundamental Iac is expressed by 

( )

( )

. 1

2 2. 1
,  

A C ST

S S

A C ST
S S

S

V V
Iac

R j L

V V
L R

j L










−  −
= 

+

−  −
 

   (8) 

where, VAC is the r.m.s of vac and VST1 is the r.m.s of vST1. 

VST1 can be defined by 

1 2ST DCV mV=    (9) 

 

 
 

Figure 3. The generated voltage vs within one cycle of vTRI 

 

For small values of β, If VST1 is greater than VAC, Iac will 

be capacitive and will be inductive if VST1 is less than VAC.  
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2.1. The Devised Open Loop STATCOM Controller 

The proposed STATCOM is designed to operate at an 

AC source having a frequency f of 50 Hz. The duration 

time of one cycle is 20 ms. Figure 4 shows the schematic 

design of the devised open loop current controller of the 

proposed STATCOM. Two parts are forming this 

controller. The first part is represented by the STATCOM 

angle controller, whereas the second part is its triggering 

circuit. The input to the angle controller is the two analog 

voltage signals k1vac=k1311sinωt=5sinωt and k2IRD. 

Where, k1 is a reduction factor stands for 0.016, IRD is the 

reactive current demand, and k2 is a reduction factor stands 

for 0.05 V/A. the analog voltage k2IRD is a DC signal 

voltage varying in the range of ±5 V for a reactive current 

demand IRD varying in the range of ±100 A (peak value). 

The inputs to the analog multiplier are the two analog 

inputs v1 and v2, which are given by  

1 5sin
2

v t



 

= − 
 

   (10) 

2 2 RDv k I=    (11) 

 

 
 

Figure 4. The STATCOM open loop current controller 

 

The analog multiplier output voltage vMT can be 

expressed by; 

1 2 25sin   
2

MT MT RD MTv A v v t k I A



 

= = − 
 

   (12) 

where, AMT corresponds to the analogue multiplier gain 

and is equal to 0.04. Note that v1 represents the analog 

voltage k1vac delayed by 5 ms or shifted by angle of -π/2. 

The term k2IRDAMT in the output of the multiplier vMT is 

varying in the range of ±0.1 V. The output of the summer 

is the modulating signal vMD, which can be given by 

( )
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RD MT
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t t k I A
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= + =

 
=  + − = 

 

 
= + − 

 

   (13) 

where, β is the STATCOM angle, which can be given by 

2 RD MTk I A =    (14) 

Since, the controller is designed such that the term 

k2IRDAMT is varying in the range of ±0.1 V according to IRD, 

then tan-1(β) can be approximated to β and Equation (13) 

can be rewritten as 

( )5sinMDv t = −    (15) 

By varying β from -0.1 rad to +0.1 rad, the fundamental 

STATCOM voltage VST1 varies from minimum to 

maximum. Positive values of β of correspond to capacitive 

currents, whereas negative values correspond to inductive 

currents. VT1 is obtained by comparing vMD with vTRI and 

VT3 is obtained by comparing -vMD with vTRI. 

 

 
 

Figure 5. The STATCOM proposed PSpice design  
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2.2. The STATCOM Circuit Design 

Figure 5 shows the circuit design corresponding to the 

proposed STATCOM, is driven by 220 Vr.m.s (311 V 

peak value), 50 Hz AC voltage. The proposed STATCOM 

is designed to respond to maximum capacitive current 

demand of 100 A as a peak and a maximum inductive 

reactive current demand of -100 A (peak value). Here the 

(-) sign refers to inductive currents. 

This STATCOM is designed on PSpice, which is very 

close in performance to real hardware. The IGBTs used are 

type CM300DY-24H. This IGBT has 1200 V as a 

maximum voltage rating and 300 A as a maximum current 

rating. In addition, it is capable of handling a power 

dissipation of 2100 W. The value of the STATCOM 

reactor LS is chosen such that the STATCOM is capable of 

satisfying a maximum reactive current (capacitive or 

inductive) of |100| A (peak value) when |β|=0.1 rad. The 

carrier signal vTRI has a frequency fTRI of 1.6 kHz. The DC 

capacitor filtering circuit is designed such the 100 Hz 

harmonic component of VDC is significantly reduced. 
 

3. SIMULATION RESULTS 

The STATCOM circuit shown in Figure 5 was tested 

on PSpice for investigating its reactive current responses 

to current demands varying from maximum pure inductive 

current of -100 A (peak value) to maximum capacitive 

current of +100 A (peak value). Figure 6 reveals the 

response of the STATCOM to current demand of -100 A 

(peak value), which represents the maximum inductive 

that can be supplied by the STATCOM. Figure 6a shows 

the transient instantaneous AC voltage vac, STATCOM 

current iac, and the DC capacitor voltage VDC, while Figure 

6b shows their steady state responses. This inductive 

current demand corresponds to a controlling voltage k2IRD 

of a value of -5 V.  
 

 
(a) 

 

 
(b) 

 

Figure 6. The STATCOM inductive response to a current demand of  

-100 A as a peak, (a) transient response and (b) steady state response 

It is obvious that the STATCOM approaches its steady 

state within five cycles of the AC input phase voltage and 

the STATCOM current is really -100 A peak value. Here 

the minus sign is used to distinguish between the 

STATCOM capacitive current, which leads the AC input 

voltage by an angle of π/2 and the inductive current, which 

lags vac by an angle of π/2.    

The STATCOM inductive response to a current 

demand of -50 A (peak value) is shown in Figure 7. Here 

the amount of reactive current demand in this figure 

corresponds to k2IRD of -2.5 V. Again, Figure 7 verifies that 

the STATCOM approaches its steady state within five 

cycles of vac and its actual current satisfies the reactive 

current demand.  
 

 
(a) 

 

 
(b) 

 

Figure 7. The STATCOM inductive response to a current demand of  

-50 A as a peak, (a) transient response and (b) steady state response 

 

Figure 8 shows the STATCOM performance during a 

current demand of zero value. In this test, the controlling 

analog voltage k2IRD has a value of 0 V. 
Both Figures 6 and 7 state that the STATCOM current 

lags the AC voltage by an angle of π/2 and that verifies its 
pure inductive reactive current response, while Figure 8 
verifies its zero reactive current response to a current 
demand of zero value. The STATCOM capacitive 
response to a demand current of +50 A (peak value) is 
shown in Figure 9. The current demand in this figure 
corresponds to k2IRD of +2.5 V. It is obvious that the 
STATCOM current leads the input AC voltage by an angle 
of π/2, which verifies the pure capacitive reactive current 
response to a current demand of +50 A (peak value). The 
STATCOM performance during its response to capacitive 
reactive elapses more time in order to approach its steady 
state response. This is due to fact that certifies inductive 
initiation of STATCOM current, since the DC capacitor 
voltage always starts from zero and then grows up 
gradually to its steady state value. 
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(a) 

 

 
(b) 

 

Figure 8. The STATCOM performance during zero reactive current 

demand, (a) transient response and (b) steady state response 

 
(b) 

 
(b) 

 

Figure 9. The STATCOM response capacitive to a current demand of  

50 A as a peak, (a) transient response and (b) steady state response 

 

Figure 10 shows the STATCOM response to a 
maximum capacitive current demand of +100 A as a peak. 
This capacitive current demand corresponds to k2IRD of +5 
V. It is obvious that the STATCOM current is really +100 
A peak value, which complies with the required capacitive 
reactive current demand. Similarly, Figure 10 
demonstrates that the STATCOM elapses more time 
throughout its settlement to state operation. In all of the 
above tests, the STATCOM angle β remains within the 
preassigned range, which is limited to ±1 rad.   

 
(a) 

 

 
(b) 

 

Figure 10. The STATCOM capacitive response to a current demand of 

100 A as a peak, (a) transient response and (b) steady state response 

 

Figure 11 shows the STATCOM current variation 

against current demand. The figure shows high linearity 

and this is due to almost linear relationship of tan-1(β) with 

respect to β within the preassigned range of operation. As 

all inductive and capacitive reactive current responses 

exhibit pure and harmonic free reactive currents 

throughout STATCOM operation in steady state regions, 

the proposed STATCOM is promoted as linearly 

controlled pure reactive element in both capacitive and 

inductive operation modes.  
 

 
Figure 11. STATCOM Current variations with current demand 

 

4. CONCLUSIONS 

In this work, a harmonic-free and linearly controlled 

STATCOM is introduced. It is feasible to be employed in 

applications requiring continuously controlled pure 

reactive elements characterized by high linearity and 

negligible harmonic associations. Thus, this STATCOM is 

promoted as an adaptively controlled compensating 

susceptance in power quality applications like load current 

balancing and voltage control.  
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NOMENCLATURES 
 

1. Acronyms  

DFIG Double Fed Induction Generator 

DSTATCOM Distribution STATCOM     

IGBT Insulated gate bipolar transistor 

PV Photovoltaic 

SPWM Sinusoidal Pulse Width Modulation 

STATCOM Static compensator 

SVC Static VAR compensator 

VAR Reactive power 

VSC Voltage source converter 
 

2. Symbols / Parameters 

MDA : The amplitude of the modulating signal 

MTA : Multiplier gain 

TRIA : The triangular voltage amplitude 

 : The STATCOM angle 

DCC : The DC capacitor 

f : The AC source frequency 

TRIf : The triangular voltage frequency 

aci : The STATCOM AC current 

RDI : The reactive current demand 

k : A number equal to 1, 2, 3, … 

1 2,k k : Constants 

SL : The STATCOM reactor 

m : The modulation indexes 

N : The time duration ratio of modulating to carrier signals 

SR : The self-resistance of STATCOM reactor 

t : Time  

,MDT T : Duration time of modulating signal 

TRIT : Duration time of carrier signal 

1 2,v v : Multiplier input signals 

acv : The AC phase voltage 

DCV : The DC capacitor voltage 

MDv : The modulating signals 

MTv : Multiplier output voltage 

STv : The H-bridge or STATCOM input voltage 

1STV : The STATCOM fundamental voltage 

STav : The STATCOM average input voltage 

1TV : The triggering signal of the IGBT T1 

2TV : The triggering signal of the IGBT T2 

3TV : The triggering signal of the IGBT T3 

4TV : The triggering signal of the IGBT T4 

TRIv : The triangular voltage 

 : The AC source angular frequency 
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