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Abstract- A discrete mechanical model is used to handle 

the non-linear free transverse vibrations of a Conical Beam 

manufactured from axial functional gradient material 

(TAFGB) supporting spot masses at several locations.  The 

beam is modelled as a system with N degrees of freedom 

(N-Dof), including N masses, N+1 bars and N+2 spiral 

spring. The details of the current model are shown in the 

following.  After the calculation of the new mass tensor 

(including the effect of added masses) ijm , the linear 

stiffness tensor ijk and the nonlinear stiffness tensor ijklb

according to (TAFGB), Hamilton's principle is applied and 

results in a nonlinear algebraic system.  The impact of 

geometric nonlinearity is then studied using a single-mode 

approach to obtain the associated backbone curves giving 

the amplitude-dependent nonlinear frequencies. The 

resulting ratio of dimensionless nonlinear to linear 

frequency, for a wide range of maximal amplitude of the 

considered beam is in good agreement with previously 

published results, which shows that validity of the present 

discrete model and its availability for other applications to 

nonuniform materials.  The great adaptability of this model 

makes the study of the parameters very simple by easily 

controlling the laws of change of the geometric and 

physical properties of the (TAFB) as well as the location 

and magnitude of the point masses on the nonlinear 

backbone curves. 

 

Keywords: Discrete Model, Free Vibration, 

Geometrically Non-Linear, AFG Beam, Point Masses, 
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1. INTRODUCTION                                                                         

Due to the widespread use of mechanical systems in 

various sectors, such as aerospace and civil engineering, 

etc. Many publications deal with free and forced vibrations 

of known structures, beam, plate and shell… etc. See for 

example [1-9]. However, the study of large vibrations of 

conical AFG beams is not very frequent in the literature 

and become a major problem for researchers. A few papers 

[10-12] deal the vibration response of the (TAFGB) beam 

in large displacement. 

The goal of this study is to develop a discrete model 

presented by Rahmouni, Khnaijar, Moukhliss and 

Benamar [9], [13-16] to handle the geometrically 

nonlinear transvers free  vibrations of Conical Beam made 

of axial functional gradient material carrying point masses 

in various location, and that considers the effect of various 

factors on the dynamic responses of the (TAFGB), in 

particular the taper ratio, the laws describing the 

geometrical and physical properties along the length, the 

magnitude and the location of point masses.   

The beam is modeled as an N-Dof system including N 

masses of magnitude rm  modeling the inertia of the beam 

and connected by means of N+1 bars of an infinite 

stiffness.  The discrete system includes N+2 spiral springs 

of rigidity 
l
rC simulating the flexural stiffness of the beam.  

The geometrical nonlinearity due to the large 

displacements caused by the normal forces is modeled by 

N+1 linear springs of stiffness rk . Note that the elements 

rm , 
l
rC and rk  vary in the length direction because of the 

inhomogeneity of the beam under study, this variation is 

governed by the laws presenting the distribution along the 

length of the (TAFGB) of the geometric and physical 

properties.  Note that the total mass of the (TAFGB) is 

non-uniformly distributed among the N masses, this is 

guided by the laws of density and cross-sectional change 

along the x-axis of the beam. 

The nature of the typical tapered beams used in this 

work is a symmetrical two-step bilinear tapered beam, the 

tensors ijm , ijk  and ijklb  are derived for the typical case 

which is considered a general case.  The discrete nature of 

this model makes it easier to study of the other types of 

beams in particular linearly tapered, parabolically conical 

and exponentially conical, etc. Different material and 
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property laws are examined as well as the effect of adding 

and magnitude point masses on the vibratory behavior in 

large amplitude of the considered beam. 

The new tensors, ijm , ijk  and ijklb  are calculated 

using the same steps presented in [14, 15]. A transition is 

made from (D-B) displacement basis, to (M-B) modal 

basis.  We apply Hamilton's principle we find a nonlinear 

algebraic system. The single-mode approach allows to 

predict rather precisely the nonlinear frequency response 

curve in the proximity of the first resonance [17]. In the 

following paragraphs we present details on the discrete 

model, and the expressions of the new tensors ijm , ijk  and 

ijklb  a function of the geometric and physical 

characteristics of the (TAFGB). 

 

2. GENERALE FORMULATION AND 

NOMENCLATURE 

The model we used is the one elaborated by Rahmouni 

[14].  We present in this work our contribution by adapting 

this model to handle the geometrically nonlinear free 

vibrations of non-uniform and non-homogeneous beams. 

 

2.1. Description of the Discrete Model  

In this work, the discrete mechanical model is applied 

to address the nonlinear free vibrations of a beam with 

variable geometrical parameters made of a material of 

axial functional gradient.  Only one nonlinearity is 

considered, the geometric nonlinearity resulting from the 

induced axial force due to the large deformations.  The 

geometrical and physical parameters namely length, 

density, squared moment, cross-sectional area, and 

Young's modulus are denoted respectively by 

, ( ), ( ), ( )L x I x A x  and ( )E x .  The widths and heights of 

the sections located at ,0
2

L
x = − and 

2

L
 are noted 

respectively by ( );left lefth b , ( )0 0;h b , ( );right righth b . The 

typical tapered beam is composed of two steps assumed 

geometrically symmetrical with respect to the middle of 

the beam such that left righth h= , left rightb b=  and the same 

length 
1 2

2

L
L L= =  as shown in Figure 1.  

The considered beam is modeled by a discrete 

mechanical system composed of N masses 

1,..., ,...,r Nm m m for 1,...,r N= whose values depend on 

the position of each mass because of the non-uniform 

nature of the beam, these last ones are linked between them 

through 1N + bars of infinite rigidities, of negligible 

masses and inertias.  We place 1N +  longitudinal linear 

springs of stiffness 1 1,..., ,...,r Nk k k + for 1,..., 1r N= +  

whose value depends on the location of each bar; these last 

ones modeled the geometrical non-linearity due to the big 

amplitudes caused by the normal forces induced in the 

beam.  The flexural rigidity is modelled is modeled by N+2 

spiral Springs of moment 
l

f rM C =   and stiffness 

1 2,..., ,...,l l l
r NC C C +  for 1,..., 2r N= + .  The values of 1

lC  

and 2
l
NC +  are assumed to be zero for simply supported 

extremities [18].  We note by Mn the number of concentric 

masses in the beam and nx  the x-coordinate of the mass n. 

We present in Figure 2, the projection of the beam in the 

(x, y) plane and the corresponding discrete model. 

 

 
 

Figure 1. The typical (TAFGB) containing two masses 

 

 
 

 Figure 2. Bi-linear tapered AFG beam and the corresponding discrete 

multi-degree of freedom system 

 

The beam shown in Figure 1 is similar to the one 

presented in [19] the thickness and width of the (TAFGB) 

are given by the following Equations: 

1 0

2 0

2
( ) 1 0

2
( )

2
( ) 1 0

2

e

e

x L
h x h x

L
h x

x L
h x h x

L





  
= + −    

   
=  
  

= −    
  

 (1) 

1 0

2 0

2
( ) 1 0

2
( )

2
( ) 1 0

2

p

p

x L
b x b x

L
b x

x L
b x b x
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= + −    

   
=  
  

= −    
  

 (2) 

The expression of the cross section of each portion and 

the square moment are given by the following expressions: 

1,2 0

2
( ) 1

p e

r
r

x
A x A

L


+
 

=  
 

 (3) 

3

1,2 0

2
( ) 1

p e

r
r

x
I x I

L


+
 

=  
 

 (4) 
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The location of the mass mr on the x-axis is illustrated 

by xr=-L/2+(r-1) ×l as shown in Figure 2. With 

r=1,…,(N+1)/2+1 for the left part of the beam i.e. for            

-L/2<x<0 (index 1). For the other part, r=(N+1)/2+1,…,N+2 

related to 0<x<L/2 (index 2), where l=L/(N+1) is the space 

used to separate two successive masses. We choose an odd 

number of N-Dof to take into account the mechanical 

behavior of the section located in the middle in the 

calculation, it amounts to inject the compatibility 

conditions automatically in the study. 

We can find the useful expressions of the geometrical 

parameters ( ), ( ), ( ), ( )h x b x A x I x  and ( )E x  of the beam 

for 3 particular cases. 

• Beam 1: Corresponds to the general case of a bilinear 

tapered beam such that (e=p=1).  

• Beam 2: Corresponds to a tapered beam with a 

rectangular section of constant width and linearly varying 

depth, 1 2( ) ( )b x b x= , which leads to (e=1 and p=0). 

• Beam 3: Corresponds to a beam of linearly varying width 

and constant depth, 1 2( ) ( )h x h x=  (e=0 and p=1). 

 

2.2. Expression of T, Vl and Vnl of the N-Dof System 

The expressions for the linear potential energy, the 

kinetic energy, and nonlinear potential energy (translating 

the geometric nonlinearity) of system at N-Dof are denoted 

respectively by lV  , T and nlV  are defined by the 

following relations [14]: 

)
2

(
1

l ii jjyV y k x=  (5) 

1

2
li jnl k ijl kV y y y y b=  (6) 

( )
1

2
i j ijT y y m x=  (7) 

where, i, j, k, l are indices varying from 1 to N. 

The expression for the amplitude of the mass i in (D-

B) is given by [14]. 

( )cos , 1( ) ,....,nl
N ofi dit t Ny A ω       i j= =  (8) 

( )cos , .( ) 1, ...,nl
j N ofi di jy a ω      i jt Nt = =  (9) 

where,       1 2 ,...,i i Ni    =     is the passage matrix 

of the (D-B) to (M-B) also represents the linear modes of 

system at N-Dof.  Where iA   represents the modulus of 

displacement iy  in the (D-B) and ia  the modulus of 

displacement in the (M-B). The 
nl
Ndof  is the nonlinear 

frequency of the discrete system associate with the 

amplitude iA  . 

We can rewrite the expressions of energies by 

replacing Equation (9), respectively in (5)-(7) we find as 

in [14]. 

( )2(
1

c
2

) os nl
i Nij oj d fl iV a a k ω     x t=  (10) 

( )41
co( ) s

2

nl
i Nijklnl i j k ofl dV  a a a a b ω t   x=  (11) 

( ) ( )
2

21
s n

2
( ) in

ijdi j
l nl

N of i NdofT ωxa a ω m t=  (12) 

where, i, j, k, l are indices varying from 1 to N, and ijm , 

ijk  and ijklb , are written in the (M-B). 

These tensors depend on the laws of variations of the 

geometrical and physical parameters of the considered 

beam. The relations among the tensor terms in (D-B) and 

(M-B) are given by the following [14]: 

tij si tj sΦk Φ k=  (13) 

ijkl si tj pk stpl qqb Φ Φ Φ Φ b  =  (14) 

 ,  , 1, ,ij i tj stsΦ Φ m i j ... N     m = =  (15) 

where, i, j, k, l are indices varying from 1 to N. 

Using Hamilton’s principle and spectral analysis [14], 

we can write:  
2 /

0

0( )l nlV V T dt
 

 =+ −  (16) 

We substitute the expressions of  T , lV  and nlV  in 

this Equation by their expressions presented in Equations 

(5)-(7), like in [14], we obtain: 
23 2 - 2 0 , , , , 1,...,i j k ijkr i ir i ira a a b a k a m i j k r N+ = =  (17) 

can be expressed as a matrix as: 

  ( )   ( )    
23

- 0
2

nl
NdofK a B a a M a    + =    

 (18) 

where, M   , K   , and ( )B a 
 

 showing respectively the 

mass matrix, the linear and non-linear elasticity matrix 

expressed in (M-B) and {a} is the displacement vector in 

(M-B) [14]. Equation (17) is a formula describe the non-

linear dynamic response of the (TAFGB). To solve it we 

must first establish the tensors ijm , ijk  and ijklb . The 

details of the calculations are shown in next, indicating the 

helpful expressions of these tensors correspond to 

(TAFGB). 

 

2.3. Expression of the Tensors mij, kij and bijkl 

The general expression of the mass tensor is given by 

the formula [9], [14]: 

( )( )
( ) , 1

1

i i
ii

L x A x
m x i N

N


=  

+
 (19) 

1( ) 0 fo , ,....r ,,ijm Nx i ji j ==   (20) 

where, i and j are indices varying from 1 to N. 

For the portion defined in the region / 2 0L x−   , 

The area of the cross-section along this portion is described 

by the function 1( )rA x so: 

( )

( )

( )

*0 0

*0 0

2
( ) ( ) 1

1

( ) for , 1,..., 1
1

1

2

e p

ij i

ij i ij

L A x
m x x

N L

L A
m x i j

N

N


 


 

+
 

= +

=
+


+  

= +
+

 (21) 

For the portion defined in the interval / 2L x L  , 

the area of the cross section is given by the law 2 ( )rA x .   
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The mass tensor components for this portion are 

presented as follows: 

( )

( )

( )

*0 0

*0 0

2
( ) ( ) 1

1

( ) for , 1...,
1 2

1

e p

ij i

ij i ij

L A x
m x x

N L

L A
m x i j N

N

N


 


 

+
 

= − 
+  

+
+

+
= =

 (22) 

If we account for the point masses. We apply a 

parameter η, that is defined as the ratio of the magnitude 

of the point mass on the abscissa rx of a homogeneous and 

unvarying beam of section 0S  and of density 0 . 

0 0

n
n

M

L A



=  (23) 

For an added mass located at position xr, the mass 

matrix can be written as follows: 

 

( )

( )

( ) ( )

( )

*
1

*
2

0

*

*

0 0 0 0

0 0 0 0 0

0 0
( )

( 1) 1 0 0

0 0 0 0 0

0 0 0 0

c

r

N

m x

m x

L A
M x

N m x N

m x





 
 
 
 
 =
 + + +
 
 
 
  

 (24) 

The expression of the kij tensor components of the 

system is given by [14]: 

( )1 22

1
4 ,  1l l l

ii i i ik C C C i N
l

+ += + +    (25) 

( )( 1) ( 1) 12

2
,  2l l

i i i i i ik k C C i N
l

− − += = − +    (26) 

( 2) ( 2) 2

1
,  3l

i i i i ik k C i N
l

− −= =    (27) 

The expression of coefficient 
l
iC  at the abscise ix  is 

given by: 

( ) ( )
, 1 2l i i

i

E x I x
C i N

l
=   +  (28) 

To present the nonlinear stiffness tensor corresponding 

to (TAFGB) we use the expression of the energy stored in 

the N+1 axial spring of stiffness ik  (Figure 2) modelling 

the geometrical nonlinearity due to the large displacement 

of the beam [14]: 

( )
41

1

2
1 8

N
i i

nl i

i i

y y
V k

l

+
−

=

−
=   (29) 

The expression for the stiffness ik  of the longitudinal 

spiral spring located at abscissa ix  is defined as follows 

[14]: 

( ) ( )
for 1,..., 1i i

i
r

E x A x
k i N

l
= = +  (30) 

where, 1 2 1...i Nl l l l += = = = . 

As mentioned in [14], Equation (7) gives the following 

expressions for the terms of the nonlinear stiffness tensor 

(as a function of rk ) translating the geometric nonlinearity 

due to the deformation of longitudinal springs: 

( )12

1
,  1iiii i ib k k i N

8l
+= +    (31) 

1 1 1 1 1 1 1 1 1

1 1 1 2

1
, 2

ii i i i ii i i i i

i i i i

i

i

b b b

b k i N
8l

− − − − − − − − −

− − −

= =

= = 

=

− 
 (32) 

1 1 1 1

2

1
2

8
,

iiii iii i ii ii i iii

i

b b b b

k i N
l

− − − −= = = =

= −  
 (33) 

( 1 1 ) ( 1 1 ) ( 1 1 )

( 1 1) ( 1 1) ( 1 1) 2

1

ii i

i

i i ii i i i ii

ii ii i iii iii i

b b b

b b b k
8l

− − − − − −

− − − − − −

= =

=

=

= = =
 (34) 

where, i is varying from 2 to N. The rest of the parameters 

ijklb  are zero. 

 

2.4. Solution of the Nonlinear Algebraic System 

The general presentation of the method of solving the 

algebraic system of Equation (9) is presented in [20]. The 

single mode approach gives the formula of the first 

nonlinear frequency from Equations (21), (25) and (31), 

the backbone curve is given by: 

211 1111
1

11 11

3
1

2

nl
Ndof

k b
a

m k


 
= + 

 
 (35) 

where, a1 is the contribution of the basic non-linear mode, 

written in (M-B) and used as a vibration factor. 

 

3. RESULTS AND DISCUSSION 

We present two numerical examples.  The first one is 

for homogeneous tapered beams and the second one is for 

AFG tapered beams.  For the two applications, we study 

the effect of the addition of point masses on the vibratory 

behavior of (TAFGB). The non-linear frequency 

calculations were performed using a MATLAB software. 

 

3.1. Numerical Result 1 

The beam illustrated in this example and the one 

presented in [21]. Three different geometries can be 

examined, the first one corresponds to bilinear tapered 

beam (Beam 1) the second one corresponds to depth 

tapered beam (Beam 2) and the last one match to Breth 

beam (Beam 3). 

To justify the results of the present study, a comparison 

of the ratios of the non-linear and linear frequencies 
*

*

nl
Ndof

l
Ndof




 is presented in Table 2 estimated for N=29 and for 

a large range of maximum dimensionless amplitude 

* max
max

A
A

R
= , with 0 0/R I S= the gyration radius at 

x=0. The conicity parameter of the beam is noted α and is 

taken α =0.4. A test of the convergence of the present study 

is examined by presenting the fluctuation of the relative 

error    21 100 / 21r rE RP R R= −    as a function of N-

Dof.  

Figure 3 presents the fluctuation of the relative error 

rE  corresponds to the (beam 2) for different values of N-
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Dof and for 
*
max 3A = , we can notice that the error remains 

practically unchanged by increasing the N-Dof. We see 

that the optimal number of N-Dof is N=29. 

It can be seen that the choice of N=29 allows fast 

execution of MATLAB program and good convergence of 

the results.  This choice is preserved for all the applications 

presented in this article. As soon as the error is 

approximately 2%, we can assume that the results are 

acceptable and very reliable. Figure 4 shows the backbone 

curve of beam 2 for different values of α. Figure 5 shows 

the comparison of the backbone curve related of beam 1 

and for different values of alpha α. 

 
Table 1. Dimensionless nonlinear and linear frequency ratios for α = 0.4 

 

*
maxA  

* */nl l
Ndof Ndof   

Beam 2 Beam 3 

Present 

Study 
[21] 

Present 

Study 
[21] 

0.1 1.0010 1.0010 1.0008 1.0008 

0.2 1.0040 1.0042 1.0030 1.0033 

0.3 1.0087 ----- 1.0069 ----- 

0.4 1.0156 1.0166 1.0121 1.0132 

0.5 1.0240 ----- 1.0190 ----- 

0.6 1.0346 1.0370 1.0271 1.0296 

0.8 1.0605 1.0649 1.0477 1.0520 

0.9 1.0755 ----- 1.0603 ----- 

1 1.0929 1.0997 1.0736 1.0801 

1.2 1.1318 ----- 1.1045 ----- 

1.5 1.1989 ----- 1.1596 ----- 

2 1.3319 1.3354 1.2703 1.2910 

2.5 1.5432 ----- 1.3974 ----- 

3 1.6583 1.6981 1.5424 1.5811 

 

 
 

Figure 3. Relative error between the result of the present study and 

publish in [21] 

 

 
 

Figure 4. Comparison of the backbone curves corresponding to beam 2 

for different values of α 

 

 
 

Figure 5. Comparison of the backbone curves corresponding to 

beam 1 for different values of α 

 

For all examples related to the Tapered beam, it can be 

seen that the effect of the non-linearity increases with the 

increase of the coefficient describing the conicity ratios of 

the beam 1, 2 and 3.  The nonlinearity is more significant 

for depth tapered than for breadth taper. In order to validate 

the results of the present study for the tapered beams 

containing point masses.  

A comparison was performed with the results 

published in [22] for a uniform beam carrying 3-point 

masses i.e. 3,Mn =  respectively in (0.2 ;0.5 ;0.7 )nx L L L=  

and (10;10;10)n =  The results are presented as 

backbones curves chowing in Figure 6 whose abscissa axis 

match to the normalized nonlinear frequency 
2

0 0 0 0/nl
Ndof L A I E   and ordinate axis corresponds to 

the normalized maximum amplitude 
*
max max /A A R= .  

Figures 8-10 illustrate the backbone curves, 

respectively for beams 1, 2 and 3 with α = 0.4 and for 

different values of nM, different positions nx and 

magnitudes n of the point masses. It can observe that the 

effect of non-linearity increases or decreases by varying 

the position, number and magnitude of the added masses. 

 

 
 

Figure 6. Backbone curves corresponding to uniform beam containing 3 

spots masses 
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Figure 7. Backbone curves corresponding to uniform beam containing 2 

spots masses 

 

 
 

Figure 8. Comparison of the backbone curves corresponding to (beam 

1) containing 3 spots masses for different values of α 

 

 
 

Figure 9. Comparison of the backbone curves corresponding to (beam 

2) containing 3 spots masses for different values of α 

 

 
 

Figure 10. Comparison of the backbone curves corresponding (beam 3) 

containing 3 spots masses for different values of α 

3.2. Numerical Result 2 

In this paragraph we provide the results of the 

dimensionless nonlinear frequencies for the (TAFGB) 

containing masses at various spots. The large amplitude 

free vibration behavior is illustrated by backbone curves in 

the dimensionless maximum amplitude-frequency plane.  

The beam is supposed to be exponentially tapered with 

constant width and variable thickness according to the law 

0( ) exp( / )h x h x L= −  for 0 x L  .  This allows us to 

rewrite the expression of the cross-section and the squared 

moment as 0( ) exp( / )A x A x L= −  and 

3
0( ) exp( / )I x I x L= − .  The laws of change of the 

material characteristics are presented in Table 2. 

 
Table 2. The laws of variation of physical properties of AFG tapered 

beams  
 

Material 1 0( )E x E=  0( )x =  

Material 2 0( ) ( 1)
x

E x E
L

= +  
2

0( ) (( ) 1)
x x

x
L L

 = + +  

 

Figures 11 and 12 show the backbone curves in terms 

of the maximum dimensionless amplitude 
*
max max /A A R=  as a function of the ratio of nonlinear and 

linear dimensionless frequencies * */nl l
Ndof Ndof   of the 

exponentially tapered axial gradient beam according 

respectively to material 1 and 2 for different values of . 

 

 
 

Figure 11. Backbone curves corresponding to beam presented in section 

3.2 according to material 1 for different value of    

 

 
 

Figure 12. Backbone curves corresponding to beam presented in section 

3.2 according to material 2 for different value of  



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 53, Vol. 14, No. 4, Dec. 2022 

 309 

The non-linearity is more important for the (TAFGB) 

made of material 2 than for beams made of material 1. 

Because the stiffness of the longitudinal springs modeling 

the geometric nonlinearity of material 2 is greater than that 

of material 1. To illustrate the effect of the additions of 

masses on the backbone curve of the (TAFGB) we take the 

example of an AFG beam according to material 2 and 

whose thickness follows the parabolic law 

( )
2

0( ) (1 / )h x h x L= −  carrying 3-point  masses i.e. 

3Mn = , respectively at (0.2 ;0.5 ;0.7 )nx L L L=  and 

(10;10;10)n = and  is the taper ratio of the considered 

beam as Figure 13. 

 

 
 

Figure 13. The parabolically tapered beam containing 3 spots masses 

 

 
 

Figure 14. Comparison of the backbone curves corresponding the 

parabolically tapered beam presented in section 3.2 containing 3 spots 

masses 

 

 
 

Figure 15. The first linear mode shape related to (beam 3) containing 3-

point masses 

 

Figure 14 shows the backbone curve of the considered 

beam. This model allows a good understanding of the 

dynamic behavior of the (TAFGB) by putting the mass in 

any place in it, this can be changing the mass matrix 

presented in Equation (24). In Figure 15, we present the 

first linear mode shape corresponding to beam presented 

in section 3.1 according to material 2 for different values 

of , carrying 3-point masses at various places.  

Figure 13 presents the first linear mode shape related 

of beam presented in section 3.2 for different values of the 

taper ration β. It can be seeing the effect of the parameter 

beta on the first mode curve.  

 

5. CONCLUSION 

 The discrete model, is used to give nonlinear 

frequencies of the (TAFGB) containing arbitrary number 

point masses in various locations. The numerical 

formulation of this method has been presented and the 

formula for the new tensors ijm , ijk  and ijklb  have been 

developed.  The application was concerned with simply 

(TAFGB) extremity.  The results of the dimensionless 

frequencies * */nl l
Ndof Ndof    were obtained by applying a 

single mode approach.  the results for the dimensionless 

frequency of the (TAFGB) in good agreement with other 

previously published which ensuring the edibility of the 

new mechanical model. This model allows the prediction 

of large amplitude vibration frequencies for any types of 

conical beam and for any combination of functional 

gradient materials. The best choice of a number (N-Dof) 

that gives a minimum of error almost for all applications is 

N=29.   
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