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Abstract- In this chapter theoretical aspects and 
applications of variational calculus to electrical 
engineering are presented. At beginning the basics of this 
type of calculus is presented, for direct problems, and the 
Euler-Lagrange equation is obtained, considering 
functionals depending on the first derivative and higher. 
Then the inverse problems are considered and the form of 
the functionals associated with the self-adjoint operators 
that govern the most used Partial Differential Equations 
(PDEs) in electromagnetics. Then the Rayleigh-Ritz and 
the weighted residual methods are presented. Application 
of the Galerkin method to a stationary magnetic field is 
described and solved symbolically and numerically. 
Aspects regarding the calculus of variations applied to 
electro-magnetic field finish the theoretical part. Then two 
case studies follow. Application of the Ritz method to a 1D 
electrostatic field problem and applications to electrical 
circuits.    

 
Keywords: Calculus of Variations, Energy Functional, 
Rayleigh-Ritz Method, Weighted Residuals Method, 
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1. INTRODUCTION 

Variational calculus has widespread applications in 
science and engineering, such as in analytical mechanics, 
computational mechanics, differential and computational 
geometry, optics, electromagnetics, modern physics, fluid 
mechanics and optimal control. There are many books and 
articles in the literature regarding different areas, such as 
[1-5]. They are applied to integer or fractional differential 
equations problems. 

This chapter approaches the applications of variational 
principles to electrical engineering. Certain foundations 
relevant for this topic are presented in [6-13]. 

This type of calculus is referring to the mathematical 
theories of the extremum principles. When solving 
problems from mathematical physics and engineering, 
instead of solving directly differential equations we can 
look for the minimum value of a definite integral, that 
generally has an energy significance. This type of problem 
is called a variational problem and methods that allow us 
to obtain this approach are called variational methods. The 
minimum principles have the advantages of being more 

suggestive than the direct evaluation of the differential 
Equations. There are certain advantages of the classical 
approach for continuous problems over the differential 
formulation regarding the approximate solution [3]. 
 First, the functional, which may actually represent some 
physical quantity in the problem, contains lower-order 
derivatives than the differential operator, and the 
approximate solution belongs to a larger class of functions.  
 Second, if the problem has reciprocal variational 
formulations, this means, one functional to be minimized 
and another functional of a different form to be 
maximized, then certain significant engineering aspects 
can be found. Another aspect indicates that the variational 
formulation can be used to consider complicated boundary 
conditions as natural boundary conditions. Finally, the 
calculus of variations it can sometimes be used to prove 
the existence of a solution. 

In the past, when engineers used the finite element 
method to solve their particular continuum problems, they 
most often relied on calculus of variations formulations to 
derive the finite element equations. This approach is 
especially convenient when it is applicable; but before it 
can be used, a variational statement for the continuum 
problem must be obtained, that is, we must pose the 
problem in variational form. 

Also, those principles allow obtaining of satisfactory 
solutions for large classes of engineering problems that 
have no analytical solutions. The calculus of variations 
represents the fundamentals for the method of moments 
(MOM) and the finite element method (FEM) [8-10, 
12,28]. In [13] applications of FEM method to magnetic 
shielding problems are presented.  

There are direct and indirect variational methods. The 
direct method is represented by the Rayleigh-Ritz method. 
The indirect methods include the method of weighted 
residuals, Galerkin, Kantorovich, Euler, and the least 
square methods. A variational principle is applicable to 
continuous media, thus, ensuring its applicability to the 
behaviour of fields, as the electromagnetic field. 

These methods generate accurate results without 
having a high computational cost and can be applied to 
electromagnetic field as well as to electric circuits’ 
problems. Space-time formulations have been used widely 
in recent years. This approach is applied simultaneously in 
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space and time to Maxwell equations in [14]. In [15] the 
Rayleigh-Ritz method is used to accelerate transient and/or 
nonlinear eddy-current analyses.  

In the Theory of Electrical Circuits and 
Electromechanical Systems different methods based on 
Kirchhoff`s laws are known for construction of 
mathematical model of technical applications. As an 
engineering analysis tool, the variational approach is well 
established and has a solid foundation in both physics and 
mathematics, based on Hamilton variational principle.  It 
says that from all possible movements of conservative 
mechanical systems in any time interval such movement 
occurs for which the functional reaches extreme (steady) 
value. Physically interpreted the method displaces a 
system from its dynamic equilibrium position and 
examines the displaced behaviour. Using the calculus of 
variations, a unique solution for an electrical or magnetic 
circuit is found via the stationary point of a suitable energy 
or power expression. 

This approach has been described in the literature by 
examining the behaviour of some linear and nonlinear 
electric and magnetic circuits. The analysis of capacity 
circuit is done in a non-traditional way based on the 
minimum energy principle in [16, 17]. Variational solution 
of a resistor circuit DC sources [18, 19], is based on the 
minimum power dissipated. It is also possible to apply the 
calculus of variations to networks with nonlinear resistors 
[18, 20], based energy conservation and minimum power 
dissipated, however, construction of the functional 
requires evaluation of integrals, in addition to the effort to 
solve the resulting set of equations. In the case of systems 
consisting of the so-called higher-order elements, 
Hamilton’s principle is extended to circuits containing the 
classical resistors and Frequency Dependent Negative 
Resistors in [22, 23]. 

The structure of the chapter is as follows: 1. 
Introduction; 2. Direct problems of variational calculus; 3. 
Inverse problems of variational calculus; 4. Rayleigh-Ritz 
method; 5. Weighted Residuals Method; 6. The variational 
mathematical model of the electromagnetic field; 7. Case 
study 1: Application of the Ritz method to a 1D 
electrostatic field problem; 8. Case study 2: Circuit 
analysis using variational approach; 9. Conclusions. 

 
2. DIRECT PROBLEMS OF VARIATIONAL 

CALCULUS 
The calculus of variation is a chapter from mathematics 

that is concerned about the finding the extremum of a 
functional (minimum, maximum or stationary). A 
functional is a mapping from a function (or a set of 
functions) to a number, as in Equations (1) and (2).  For 
example, in [1-3, 5] and [9-10]: 

2 2

1
[ ( )] [ ( )]

x

x
I y x y x dx   (1) 

 2

1
[ ( )] , ( ), ( )

x

x
I y x F x y x y x dx   (2) 

where, 
( )

( )
dy x

y x
dx

  . 

Many engineering problems can be formulated using 
the calculus of variations, in which we need to find a 

function ( )y x  that minimizes (or maximizes) this 

functional and is subjected to certain essential (boundary) 
conditions, such as  1y x a , and  2 .y x b  For a 

function ( )f x , its differential, ,df  is how much f

changes if its argument, x changes by an infinitesimal 

amount dx . For a functional  I y x   , the corresponding 

term is its (first) variation, .I  I  is how much I  

changes if its argument, the function  y x , changes by an 

infinitesimal amount  y x . 

This is illustrated in Figure 1, where function  y x  is 

shown with continuous lie and the varied function first 
variation is with dotted lines. If the function undergoes a 
small change y  as in Equation (3): 

 ( ) ( ) y xy x y x    (3) 

where,  y x is a small, continuous function, then the 

variation of the functional is Equation (4): 

   I I x I xy y          (4) 

We intend to obtain the explicit expression of I . The 
operator   is called the variational symbol. The variation 

y  of y vanishes at points where y is prescribed, and it is 

arbitrary elsewhere (Figure 1). 
 

 
 

Figure 1. Variation of the extremizing function y(x) 

 
Due to the change in y (i.e., y y y  ), there is a 

corresponding change in I. The first variation of I at y is 
defined as it can be seen in Equation (5). 

F F
F y y

y y

   
 

 


 (5) 

This is analogous to the total differential of I, as it can 
be seen in Equation (6): 

F F F
F x y y

x y y

     
  

  


 (6) 

where, 0x  since x does not change as y changes to 
y y . Thus, we note that the  operator is similar to the 

differential operator. Therefore, if  1 1F F y and 

 2 2F F y  [1-3, 5] then the corresponding mathematical 

operations are as in Equations (7) to (12): 

1 2 1 2( )F F F F      (7) 

1 2 2 1 1 2( )  F F F F F F     (8) 

1 2 1 1 2
2

2 2

 F F F F F

F F

 

  

 
 

 (9) 
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    1
1 1 1

n n
F n F F   (10) 

d dy
y

dx dx
     

 
 (11) 

( ) ( )
b b

a a

y x dx y x dx    (12) 

A necessary condition for the function  I y  in 

Equation (2) to have an extremum is that the variation 
vanishes, as in Equation (13). 

0I   (13) 
To apply this condition, we must be able to find the 

variation I of I, as in Equation (4). Let  h x  be an 

increment in  y x . The boundary conditions are satisfied 

by      y x h x if Equation (14) is true: 

   1 2 0h x h x   (14) 

The corresponding increment in  I y in Equation (2) 

is [2, 3, 9, 13]: 

2

1

( ) ( )

[ ( , , ) ( , , )]
x

x

I I y h I y

F x y h y h F x y y dx

    

     
 (15) 

Applying Taylor’s expansion, we obtain Equation (16): 

'
2[ ( , , ) ( , , ) ] ( )

b

y y
a

I F x y y h F x y y h dx I O h        (16) 

where, [ ( , , ) ( , , ) ]
b

y y
a

I F x y y F x y y h dx     . 

Integrating by parts and imposing 0I   the 
following Equation (17) is obtained [2, 3, 5]: 

0
F d F

y dx y

  
    

 (17) 

This is called Euler’s (Euler-Lagrange) equation. Thus, 
a necessary condition for  I y to have an extremum for a 

given function  y x is that  y x must satisfy Euler’s 

equation. This idea is extended to more general cases in 
Equation (18), for example when the functional depends 
on the second and higher order derivatives [1, 2, 3, 10]: 

( )( ) ( , , , ,..., )
b

n

a

I y F x y y y y dx    (18) 

In this case the corresponding Euler’s Equation 
becomes Equation (19): 

  ( )

2 3

2 3
...

1 0n

y y y y

n
n

yn

d d d
F F F F

dx dx dx

d
F

dx

      

  

 (19) 

 
3. INVERSE PROBLEMS OF VARIATIONAL 

CALCULUS 
The Euler's equation produces the differential equation 

corresponding to a given functional or to a variational 

principle. The inverse procedure of constructing a 
variational principle for a given differential equation is of 
great interest. We consider a differential Equation (20), 
described by an operator L [3, 10]: 
Ly g  (20) 

If L is real, self-adjoint, and positive definite, the 
functional associated with the previous equation, that 
would be minimized by the solution of Equation (20) is the 
functional: 
  , 2 ,I y Ly y y g   (21) 

where, ,  f g  is the scalar or the dot product of 

functions f and g. 
*,f g fg d



    (22) 

This approach can be applied also to derive solutions 
of integral equations. Other systematic approaches for the 
derivation of variational principles of electromagnetic 
problems include Hamilton's principle or the principle of 
least action and Lagrange multipliers [1, 2, 3, 6]. 

The expressions of certain variational functionals 
corresponding to some of the mostly used PDEs from 
electromagnetics (wave, diffusion, and Poisson types) are 
described in [7, 10]. The nonhomogeneous wave is 
described by Equation (23): 

2 2k g      (23) 

and the corresponding functional is described by Equation 
(24): 

  2 2 21
2

2
v

I k g dv          (24) 

The diffusion equation is described by Equation (25): 
2 2 0tk      (25) 

and the corresponding functional is described by described 
by Equation (26): 

  2 2
2

1 1

2 t
v

I dvdt
u

         (26) 

 The Poisson equation is in Equation (27): 
2 g    (27) 

and the functional has the expression from Equation (28)   

  21
2

2
v

I g dv        (28) 

where, 
2 2 2

2

2 2 2x y z

     
   

  
 (29) 

For an electromagnetic field the functional has the 
general form [26, 27]:    

2 2

0

1
[A ( ) ]

2 2

t

V

A
I J grad rot A dVd

t

  



     

   (30) 

or : 

2

0

2

1
[ A( ) ( )

2

1
]

t

V

A A
I grad grad

t t

rot A dVd

   




 
     

 



 
 (31) 
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4. RAYLEIGH-RITZ METHOD 
One general method for obtaining approximate 

solutions to problems expressed using the calculus of 
variations form is known as the Ritz method. The 
Rayleigh-Ritz method it is one of the most important direct 
variational methods, used both obtaining solutions to 
problems in physics and engineering, theoretically and 
practically [3, 7, 9, 10]. 

Suppose that a function ( )y x  is sought that must 

perform the extreme of the functional ( )I y . The function 

can be approximated by a linear combination of 
conveniently chosen independent linear coordinate 
functions of the form: 

       0 1 1 2 2( ) ... n ny x x c x c x c x          (32) 

where, the constant coefficients nc  are to be determined.  

The functions  0 x ,  1 x  …  n x  are chosen in 

advance, so that this expression satisfies the boundary 
conditions given for any choice of constants 1 2, ,... nc c c . 

For problems of physical significance, the general nature 
of the desired solution is often known, and the system of 
functions is chosen so that a linear combination is expected 
to represent well enough the solution. Replacing (32) in the 
functional and performing the integration we obtain: 

1 2( , ,..., )nI I c c c  (33) 

The value of the functional is now a function of the n 
unknowns’ coefficients: 1 2, ,..., .nc c c  In this way the 

problem of variational calculus is replaced by a common 
problem of maximum and minimum. The solution is 
generally obtained by solving a system of n equations with 
n variables. 

0,
i

I

c





1, 2,...,i n  (34) 

The efficiency of the process depends obviously on 
choosing convenient approximation functions  i x . In 

practice, the procedure consists in obtaining a succession 
of approximations where 0 1 1c   is the first, 

0 1 1 2 2c c    is the second, 0 1 1 2 2 3 3c c c      , is 

the third and generally (32) is the nth approximation.  
The values of the constants c must be determined at 

each stage of the process. However, an important feature 
of this method is the following one. 

If 0 1 1 2 2( ) ( ) ( ) ( ) ... ( )n n ny x x c x c x c x       
represents the nth approximation of the true solution ( ),y x  

then: 

1 0 1 1 2

1 1

( ) ( ) ( ) ( ) ... ( )

( )
n n n

n n

y x x c x x c x

c x

   




 

     


 (35) 

the ( 1)thn   approximation, will be better than ny .  

In general, the constants kc  will differ from the 

corresponding values kc , 1,k n . By comparing the 

successive approximations, an evaluation of the order of 
accuracy achieved in each calculation step can be 
determined. We define the convergence of the process as, 

for n   the functions  0 1

n

n nk
C X 


  converge 

to the desired function ( )y x . 

In many cases, a complete system of functions is 
chosen, such as polynomials, sins and cosines, Bessel 
functions, the choice depending on the shape of the 
domain, the type of coordinate system, etc. The previous 
discussion of the Rayleigh-Ritz process can be extended in 
several ways. Functionals and coordinate functions can 
contain several independent variables. Thus, suppose we 
want to find out the minimum of functional: 

( ) ( , , , , )x yA
I u F x y u u u dxdy   (36) 

with the limit condition: 
( )u g s  (37) 

On the contour C, where ( )g s is a position function 

prescribed on C, and s is the length of the arc, measured 
from a fixed point on C. Then the approximate solution can 
be written as: 

1 1 2 2( , ) ( , ) ( , ) ( , ) ...

( , )
n o

n n

u x y x y c x y c x y

c x y

  


    


 (38) 

where, 0  satisfies (37), ( , ) 0k x y   on C for

1,2,....,k n  and 1 2, ,..., nc c c  are constants to be 

determined so that ( )nI u  is extremized.  

The coordinate functions are chosen in advance so as 
to satisfy the boundary conditions. Similarly, our 
considerations can be extended to a functional which 
depend on several independent variables, as well as on 
higher order derivatives appearing in the functional form 
of the integrand F . 

The Rayleigh-Ritz method has two drawbacks [3, 7, 
10]. For certain problems described by non-self-adjoint 
PDEs (odd order derivatives) the variational principle may 
not exist. Another aspect is that is very difficult to find the 
functions that satisfies the global boundary conditions for 
the domains with complicated geometries. For the more 
general Petrov-Galerkin method, the weighting functions 
are different from the basic functions. 
 

5. WEIGHTED RESIDUALS METHOD 
 
5.1. Introduction 

The Rayleigh-Ritz method can be applied when a 
suitable functional exists. When such functional is difficult 
or impossible to find, we apply one of the techniques 
usually referred to as the method of weighted residuals. 
The applicability of the method it is not limited to the 
classes of variational problems. 

We consider the equation: 
Ly g  (39) 

where, L is a differential or integral operator. 
The solution to Equation (39) is approximated, using 

the expansion functions, n  as follows: 

1

N

n ny c    (40) 

where, nc  are the unknowns’ coefficients. 
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Replacing the approximate solution in Equation (40) a 
residual R is generated: 

( )R L y y Ly g      (41) 

The weighting functions mw  (usually they are not the 

same as wn) are chosen such that the integral of a weighted 
residual is zero, in some sense: 

0mw Rdv   (42) 

or using the scalar product: 
, 0mw R   (43) 

If a set of weighting functions mw  (also known as 

testing functions) are chosen and the inner product is 
considered for each mw , we obtain Equation (44): 

1

, ,
N

n m n mc w L w g   (44) 

where, 1,m N .The matrix form of system of linear 
equations (44) is: 
    A C G  (45) 

where, ,mn m nA w L , ,m mG w g , n nC c . 

Solving system (45) and replacing the obtained nc

coefficients in Equation (40) we found the approximate 
solution to Equation (39). 

There are different ways of choosing the weighting 
functions nw  that generate different methods: 

 collocation (or point-matching method), 
 subdomain method, 
 Galerkin method, 
 least squares method. 

If the operator L is a linear differential operator of even 
order and we consider the weighting functions being the 
same with the basic functions, i.e., m mw   then the 

Galerkin method reduces to the Rayleigh-Ritz method. 
This is due to the fact that the differentiation can be 
transferred to the weighting functions and the resulting 
coefficient matrix [A] will be symmetric [3, 10]. 
 
5.2. Method of Weighted Residuals for a Poisson 
Partial Differential Equation 

We consider a Poisson PDE: 
0k u g     (46) 

where, u is a potential (electric or magnetic) defined in a 
domain D with a boundary  , with Dirichlet or Neumann 
boundary conditions. In order to obtain the numerical 
solution of Equation (46) we can use Equation (40) and 
express the potential u [7, 9, 24]: 

i iu N a   (47) 

where, iN are suitable chosen shape functions or trial 

functions and ia  are parameters (potential values) that 

should be found. Replacing Equation (47) into Equation 
(46) we obtain a certain residue: 

  0i iR k N a g      (48) 

where, in general R vanishes if ia  is the exact solution.  

Equation (48) is the residue equation, and it measures 
the error introduced by using the approximate solution 
Equation (47). The Equation (42) is known as the weighted 
residual approximation of the solution. If the number of 
weighting functions is chosen equal to the number of trial 
parameters a system of linear equations is obtained: 

i j i iw k N d a w gd
 

 
        

 
    (49) 

which is of the form: 

ij j jK a g  (50) 

This formulation allows the unification of the 
commonly used methods as Equation (39); specific 
techniques are available for Equation (49) by particular 
choices of the weighting function. For exemplification, we 
consider the problem of finding the magnetic field inside a 
highly permeable rectangular conductor. 
 

 
 

Figure 2. Magnetic potential Az contour lines 
 

This example satisfies the linear Poisson equation, so 
that: 

2
z zA J g     (51) 

subjected to the following boundary conditions: 

0

0
n

A
x a

y
B

A
y b

x

    
    

 (52) 

 Example 1 [24]: 
Considering a very simple trial function with just one 

unknown parameter A1 we obtain: 
2 2 2 2

1 1 1( )( )A x a y b A N A     (53) 

That verifies the boundary conditions Equation (52) 
Applying Galerkin weighting 

j jw N  (54) 

Equation (49) becomes: 

 2
1 1 1 1N N dxdy A J N dxdy



     (55) 

Replacing 1N we obtain: 

 2 2 2 2 2 2 2 2

2 2 2 2

2
12 ( )( ) ( )( )

( )( )

x a y b x a y b

yx a y

d

b

xdy A

J dxd


 
   





 

 






 (56) 

After mathematical manipulations, the value of A is found: 
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2 2 2 2

2 20

( )(5 )

8
A

x y

a
J

b

a b



 





 (57) 

 Example 2[45]: 
In this example consider a two-parameter trial function 

is considered: 
2

1 2
2 2 2 2 2 2 2 2( )( ) ( )( )A x a y b x a Ax y bA      (58) 

or: 

1 1 2 2A N A N A   (59) 

Applying Galerkin weighting to Equation (56) a 
system of algebraic equations results: 

11 1 12 2 1k A k A f   (60) 

21 1 22 2 2k A k A f   (61) 

where, 
2

1 1ijk N N dxdy   (62) 

i ig J N dxdy    (63) 

Replacing iN in Equations (61) and (62) and 

performing the integration, the following system results: 
2 2

2 2 2

2
2 2 2 2

1

2

7 5 5

1 8

7 5 7 3 5

11

a b
a a

a b a a b

b
A J

A



  
               

              
    

 (64) 

The solution is: 
2 2 2 2

4 2 2 4 4 2 2 4

2 2 2 2

6 4 2 2 4 6 4 2 2 4

175 (5 33 ) 105 (5 7 )

32(25 280 252 ) 32(25 280 252 )

3675 ( ) 525 (5 7 )

32(25 280 252 ) 32(25 280 252 )

A
a

J a b J a b

a a b b a a b b

J b J a b

a a b a b a a b a b






 
 



 





  

 

 
 


 
 

 (65) 

In Figure 3 the values of the magnetic vector potential 
are compared, along the median line of the conductor, from 
(-a,0) to (a,0), considering the results from finite element 
method software Comsol Multiphysics and those from the 
Galerkin approximation considering relation (53). 
 

 
 

Figure 3. Comparison between Galerkin and FEM values of the 
magnetic vector potential A 

 
It can be noticed that even for the one parameter 

approximation Galerkin method generates reasonable 
results. The error increases as we get closer to the centre 
of the conductor. 

6. THE VARIATIONAL MATHEMATICAL 
MODEL OF THE ELECTROMAGNETIC FIELD 

The analysis of the macroscopic electromagnetic field 
admits besides the differential formulation also an 
equivalent variational formulation [6, 7, 8, 11, 12]. The 
construction of that formulation assumes the setting of a 
variational principle (of Lagrangian or Hamiltonian type) 
capable of offering from the stationary condition of an 
adequate functional, the electromagnetic field in bodies. 

Certain aspects regarding the formalism of Lagrangian 
type associated to the electromagnetic potentials will be 
described. Both physical and intuitive significance of the 
natural energy functionals are emphasized. If kx  are the 

independent variables (including time), that describes a 
physical system, jy  the dependent variables and jky  the 

partial derivatives of first order: 
/jk j ky y x    (66) 

The variational principle of the stationary action 
postulates the existence of an integral type of functional S, 
called action, of the following form:  

( , , )k j jkS L x y y d


   (67) 

The action S poses a stationary value (or an extreme 
value) corresponding to the real evolution of the 
considered system. The integrand L is called Lagrangian 
and represents a scalar function of the respective physical 
system. The Lagrangian signifies the difference between 
two terms: one of kinetic co energy density type and the 
other of potential energy density type: 

*
c pL w w   (68) 

The necessary stationary condition, Equation (13), 
consists of cancelling its first variation: 

( , , ) 0k j jkS L x y y d 


    (69) 

Generally, the action S must contain three additive 
terms [6, 7, 8, 9, 11]: 
– The first term depends on the properties of the material 
bodies in the absence of the field.  It is omitted because it 
does not intervene in the computation of the 
electromagnetic field. 
- The second term describes the free electromagnetic field   
- The last term describes the electromagnetic interaction 
between field and bodies.  

As a consequence, the action integral is considered as 
a functional of energetic type of the following form: 

 

 
0 0

C CC c cc
D

E B

v
D

S S S L L dD

Dd E Hd B J A V dD

    

            



  
 (70) 

where, the expressions of the Lagrangians cL  and ccL  

were emphasized. 
The expression of cL  is justified considering that: 

- It represents a scalar function of the electric and magnetic 
field components. 
- It is in concordance with the definition (81)  
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The Lagrangian cc vL J A V   defines the difference 

between the volume densities of the magnetic field and 
electric field, respectively. The Maxwell equations for 
quasi stationary regime are the following: 

B
curlE

t


 


 (71) 

D
curlH J

t


 


 (72) 

VdivJ
t


 


 (73) 

VdivD   (74) 

0divB   (75) 
The electric and magnetic potential V and A are 

introduced using the following relations: 

B curl A  (76) 

A
E gradV

t


  


 (77) 

The magnetic flux density  B  and the electric field E  
satisfy Equation (74) and Equation (75), being uniquely 
determined by Equation (76) and Equation (77). It can be 
proven [8] that for arbitrary and independent variations of 

the potential functions A  and V, applying (69) to 
functional (70) we can be obtain the Maxwell equations. If 
the first variation of the functional (70) is considered, then 
we obtain: 

 

    
 

   

   

0 0

( , )
E E B B

v
D

v
D

v
D

v
D

S A V DdE HdB J A V dD

DdE HdB J A V dD

A
D HdB Hrot A J A V dD

t

D
J HdB rotH A divD V dD

t

D A div D V di
t

 

     

  


   



  


 


              

   

              
               


  

  







  0v A H dD
   
 

 (78) 

Applying the Gauss theorem to the terms that includes 
divergence, in the second integral and considering the 
boundary of the domain D at infinite then the last two 

terms vanish. Also, the first term is zero because 0A   
at the ends of the temporal range, after the time integration. 

As a consequence, the first integral is zero and the 
equations (72) and (74) are fulfilled. Equation (73) can be 
deduced from (72) and (74) as a dependent equation. The 
variational handling of a concrete analysis problem of the 
electromagnetic field implies [8]: 
- Customizing the action integral (70) according to the 
electromagnetic field regime and to the physical state of 
the field media 

- The inclusion into the energetic functional of the 
uniqueness conditions  
- Solving the problem to find the potential function that 
cancels the first variation of action. 
 
7. CASE STUDY 1: APPLICATION OF THE RITZ 

METHOD TO A 1D ELECTROSTATIC FIELD 
PROBLEM 

The electrostatic field equations are: 

0E   (79) 

)( vD E    (80) 

where, E is the electrostatic field, D  is the electric 
induction, ε is the electric permeability of the media and  

v  is the volume charge density. 

Equation (79) indicates that E  can be written as the 
gradient of a scalar field V, the electrostatic potential: 

E V   (81) 
Replacing (79) in (80) we obtain: 

2( ( )) vV V        (82) 

2 vV



    (83) 

The problem is to solve the Poisson equation (83) and 
determine the potential V that verifies certain boundary 
conditions. We consider two infinite (extended in Oy 
direction) conducting plates placed at x=0 and x=a, 
respectively as in Figure 4. 

 

 
 

Figure 4. 1D electrostatic problem 

 
7.1. Differential Formulation 

Let us consider that the change is distributed with a 
charge density, 0( )v x x      between plates [25]. 

Because the potential V depends only on x coordinate 
Equation (83) becomes: 

2

2
0

0

x
d V

dx




   (84) 

Considering 0

0

1



 , Equation (84) becomes: 

2

2
x

d V

dx
   (85) 

Integrating twice Equation (85) we obtain the 
analytical solution: 

2

1 2( )
6

x
V x c x c     (86) 
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Using the boundary conditions (0) 0V  and

( ) ,aV a V  1c , 2c  are obtained, and the solution becomes: 
2 2

( )
6 6

avx a
V x x x

a
     (87) 

We will consider 1a m  and 100aV V .We would 

like to approximate the solution using the Ritz method. 

The potential V will be approximated with 
~
V  considering 

the following expression: 
 2( ) ( ) 100V x C x x x    (88) 

Electric potential ( )V x  satisfies the boundary 

conditions: (0) 0V  and (1) 100V  . The functional that 

will be minimized has the expression: 
21

( ) ( 2 )
2

V

I V V xV dx    (89) 

Replacing (88) in (89) and performing the integration 
we obtain for the functional the expression: 

2 2 200
( ) 10000

3 3 2 3

c c c
I V        (90) 

Minimizing the functional ( )I V  we obtain the value of 

the c parameter from (90): 

0
I

c





 (91) 

This gives 
1

4
c  . Because the second derivative is 

positive: 
2

2

2
0

3

I

c


 


 it confirms the minimum of the 

functional ( )I V . 

The approximation ( )V x  has the final expression: 

  21
0) 0( 1

4
V xxx x    (92) 

In Figure 5. the exact solution  ( )V x  and  ( )V x  are 

compared and a good agreement is noticed. 
 

 
 

Figure 5. Comparisons between the analytical and Ritz solution 

 
The results from Figure 5 show a good agreement 

between the analytical solution (87) and the Ritz 
approximation (92). Generally, in order to improve the 
precision more terms should be considered in the 
approximation. 

8. CASE STUDY 2: CIRCUIT ANALYSIS USING 
VARIATIONAL APPROACH 

 
8.1. Solution of Capacitor Circuits  

The analysis of a capacity circuits is done in a 
traditional way, based on Kirchhoff’s laws, and in a non-
traditional way, based on the variational approach 
(minimum energy principle). 

 
8.1.1. Application 1 

Consider the capacitor circuit illustrated in Figure 6. 
For the numerical values of parameters of branch 
elements: 1 220V, 40V,E E  1 22μF, 4μF,C C   

3 4 55μF, 20μF, 10μFC C C   , it is required to 

determine the voltages at the capacitor terminals. 
 

 
 

Figure 6. Capacitor circuit with DC sources 

 
Applying the solving algorithm with Kirchhoff's 

theorems, for static electrical circuits, we obtain the 
following linear system of equations, Equations (93), (94): 

11 2 3

23 4 5

3 1

4

5 2

00 0

00 0

1 1 0 0 0

00 1 1 1 0

0 0 0 1 1

UC C C

UC C C

U E

U

U E

    
         
      
    

     
        

 (93) 

6 6 6
1

6 6 6
2

3

4

5

2 10 2 10 5 10 0 0 0

00 0 5 10 20 10 10 10
201 1 0 0 0
00 1 1 1 0
400 0 0 1 1

U

U

U

U

U

  

  

       
     

        
           
     
         

 (94) 

with solutions: 

1 2 3 4

5

10.56V, 9.44V, 3.33V, 12.77V,

27.23V.

U U U U

U

     

 
 

Next, an alternative solution method based on the 
Hamiltonian variational (energetic) principle [16, 17] will 
be used. Accordingly, the voltage on the sides of the circuit 
is distributed so that the energy of the electric field is 
minimal. Considering the potentials of the n nodes of the 
circuit as unknowns, up to n-1, because the potential of a 
node is considered the reference, according to Figure 7, 
results:

1 1 1 1 2 2 3 1 2 4 2

5 2 2 2

20, , , ,

40.

U V E V U V U V V U V

U V E V

       

   
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Figure 7. Capacitor circuit with DC sources and unknowns’ voltages V1 
and V2 

 
The functional based of the electrical energy of the 

system is described in Equation (95): 
6 2 6 2

1 2 1 1

6 2 6 2 6 2
1 2 2 2

1 1
( , ) 2 10 ( 20) 4 10

2 2
1 1 1

5 10 ( ) 20 10 10 10 ( 40)
2 2 2

elstW V V V V

V V V V

 

  

     

       
 (95) 

To find the stationary point, minimum of functional

1 2( , )elstW V V , differentiate 1 2( , )elstW V V  with respect to V1 

and then V2, and set each result to zero as in Equations (96), 
(97), (98). 

6 61 2
1 1

1

6
1 2

( , )
2 10 ( 20) 4 10

5 10 ( ) 0

elstW V V
V V

V

V V

 




     



   

 (96) 

6 61 2
1 2 2

2

6
2

( , )
5 10 ( ) 20 10

10 10 ( 40) 0

elstW V V
V V V

V

V

 




      



   

 (97) 

1

2

11 5 40

5 35 400

V

V

     
         

 (98) 

The obtained results are: 1 29.44 , 12.77V V V V  . 

The nature of the turning point is obtained forming the 
second order derivatives of functional 1 2( , )elstW V V , 

Equations (99). 
2

6 6 6 61 2
12

1

2
6 6 6 61 2

2
2

( , )
2 10 4 10 5 10 11 10 0

( , )
5 10 20 10 10 10 35 10 0

elst

elst

W V V
V

V

W V V

V

   

   


        




        



 (99) 

Because both are positive quantities, the turning point 
of electrostatic energy is a minimum, 

1 2 min( , ) 5.655 mJelstW V V  . 

The voltage V1 and V2 are treated as trial functions and 
varied up to 20 and 40 volts respectively, then 1 2( , )elstW V V

exhibits a minimum value of 5.7mJ for

1 29.4445V, 12.7778VV V  . The minimum value, 

where obtained using the Nelder-Mead algorithm, 
implemented in MATLAB, using the function fminsearch, 
with 85 iterations, Figure 8, It is a multidimensional 
unconstrained nonlinear minimization technique. 

 

 
 

Figure 8. The distribution of the electrostatic energy versus  
V1 and V2 

 
8.1.2. Application 2 

In this application for capacitor circuits the advantage 
of the variational method on more complex networks will 
be highlighted. For the capacitor circuit illustrated in 
Figure 9, the numerical values of parameters of branch 
elements are: 

1 2 1 2 3

4 5 6 7 8

50V, 200V, 1μF, 2μF, 3μF,

4μF, 5μF, 6μF, 7μF, 8μF.

E E C C C

C C C C C

    

    
 

The request is to determine the voltages at the capacitor 
terminals. 

 

 
 

Figure 9. Capacitor circuit with DC sources 

 
The solving with Kirchhoff's theorems, we obtain the 

following linear system of equations, as Equations (100), 
(101): 

11 2 8

22 3 5 7

36 7 8

44 5 6

5 1

6

7

8 2

00 0 0 0 0

00 0 0 0

00 0 0 0 0

00 0 0 0 0

1 1 1 0 0 0 0 0

00 1 0 0 0 0 1 1

00 0 0 0 1 1 1 0

0 0 1 1 1 0 0 0

UC C C

UC C C C

UC C C

UC C C

U E

U

U

U E

    
         
    
    
         
    

      
          

         

 (100) 

W
e
ls
t[
J]
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6 6 6
1

6 6 6 6
2

6 6 6
3

6 6 6 4

5

6

7

8

1 10 2 10 0 0 0 0 0 8 10

0 2 10 3 10 0 5 10 0 7 10 0

0 0 0 0 0 6 10 7 10 8 10

0 0 0 4 10 5 10 6 10 0 0

1 1 1 0 0 0 0 0

0 1 0 0 0 0 1 1

0 0 0 0 1 1 1 0

0 0 1 1 1 0 0 0

U

U

U

U

U

U

U

U

  

   

  

  

                                             

0

0

0

0

50

0

0

200

 
 
 
 

  
    
  
  
  
  
   

 (101) 

 
with solutions: 

1 2 3 4

5 6 7 8

43.45V, 5.08V, 88.37V, 77.15V,

34.48V, 22.69V, 11.79V, 53.68V.

U U U U

U U U U

    

   
 

Applying the variational approach, similarly with 
Application 1, the potentials of the n-1 nodes of the circuit 
will be determined, the potential of the nth node being the 
reference. In accord with Figure 10, results: 

1 1 1 1 2 1 2 3 2

4 4 2 4 5 4 2 6 4 3
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50, , ,
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, .

U V E V U V V U V
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U V V U V V

      

       

   

 

 

 
 

Figure 10. Capacitor circuit with DC sources and unknowns’ voltages 
V1, V2, V3 and V4 

 
The functional based of the electrical energy of the 

system is described by Equation (102): 

6 2 6 2
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 (102) 

Differentiate 1 2 3 4( , , , )elstW V V V V with respect to V1, 

V2, V3 and V4, and set each result to zero, we reach to 
Equations (103) and (104): 
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The results obtained are: 

1 2 3 493.45V, 88.37V, 100.16V, 122.85V.V V V V     

The positive sign of the second order derivatives of 
functional 1 2 3 4( , , , )elstW V V V V , in Equations (105) 

indicates the existence of a minimum value for the 
electrostatic energy 1 2 3 4 min( , , , ) 29.772 mJ.elstW V V V V 
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Using the Nelder-Mead algorithm, with 490 iterations, 
the values of the electric potentials are: 

1 2 3

4

93.4026V, 88.3149V, 100.1083V,

122.83344V.

V V V

V

  


 

The minimum value of the electrostatic energy is

min 29.771 mJ.elstW   
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8.1.3. Discussion 
From applications 1 and 2 we observed that the 

variational formulation is more computationally 
advantageous for circuits with many nodes (n>3) 
compared to the method based on Kirchhoff’s laws. In the 
first case we obtain a system with 8 unknowns where for 
the second there are only 4 unknowns. Also, the potential 
values obtained by those methods are in good agreement. 

 
8.2. Solution of a Resistor Circuit  

The analysis of a resistor circuits is performed as the 
former applications. 

 
8.2.1. Application 3 

Consider a resistor circuit (DC) illustrated in Figure 11. 
For the numerical values of parameters of branch 
elements: 

1 2 1 2 3 420V, 20V, 2 , 8 , 4 , 10 ,E E R R R R         

56A, 0.2s,sI G  it is required to determine the voltages 

at the resistor terminals. 
 

 
 

Figure 11. Resistor circuit with DC sources 

 
If node voltages are used, for compare the two ways to 

solve the application, then all sources must be converted to 
voltage sources. Then, transfiguring the real current 
source, 56A, 0.2ssI G  , into the real voltage source,

3 530V, 5E R   , is obtained equivalent wiring 

diagram Figure 12. 
 

 
 

Figure 12. Resistor equivalent circuit with DC sources 

 
Applying the solving algorithm with Kirchhoff's 

theorems, for stationary electrical circuits, we obtain the 
following linear system of equations, Equations (106) and 
(107):  
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 (107) 

with solutions: 

1 2 3 4

5

1.25V, 7.08V, 3.33V, 22.08V,

7.92V.

U U U U

U

    

 
 

Applying the variational solving method [18, 19], the 
potentials of the n-1 nodes of the circuit will be 
determined, the potential of the nth node being the 
reference. In accord with Figure 13, results: 
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Figure 13. Resistor circuit with DC sources and unknowns’ 
voltages V1, V2, V3 and V4 

 

The functional based of the electrical power of the 
system is described by Equation (108): 

2 2 2
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Differentiate 1 2( , )P V V with respect to V1, V2 and set 

each result to zero, we found Equations (109), (110): 
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The obtained results are: 1 222.08V, 3.33V.V V   

From Equation (111) the minimum value of electrical 
power is obtained 1 2 min( , ) 81.89 WP V V  : 
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1 2
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 (111) 

Using the Nelder-Mead algorithm, for V1 and V2 varied 
between 0 and 30 volts, with 36 iterations, the potentials 
were 1 222.6V, 2.91VV V  , with a minimum power 

value min 82.6563WP  , in good agreement with previous 

values. The graphical power is in Figure 14. 
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Figure 14. Power of electric circuit as a function of V1 and V2 

 
9. DISCUSSION 

Other conventional methods based of Kirchhoff’s 
laws, such as nodal analysis (especially in this case), or 
mesh currents quickly give the same solutions, but the 
variational solution offer another approach, based on 
Hamilton variational principle, used throughout science 
and engineering. Is not necessary to consider the polarities 
of current/tensions to the branch of circuit, they are 
specified in the end, after obtaining the results.  

 
10. CONCLUSIONS 

This paper presents some fundamental aspects of 
calculus of variations as well as applications to 
electromagnetic field and electric circuits. Functionals 
associated with the PDEs for electromagnetic problems are 
presented. Algorithms of Rayleigh-Ritz and weighted 
residuals methods (Galerkin) are described and applied to 
electrostatic, magneto statics and electric circuits’ 
problems. Variational principles can provide a useful 
alternative teaching method for solving capacitor and 
resistor circuits without the use of Kirchhoff's laws, using 
as a characteristic equation a functional that describes the 
entire circuit. The optimization procedures implemented in 
this method give the possibility to improve the numeric 
solutions and to increase the accuracy of the results. Future 
research will be focused on the nonlinear electric circuit’s 
component. 
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