

International Journal on

“Technical and Physical Problems of Engineering”

(IJTPE)

Published by International Organization of IOTPE

ISSN 2077-3528

IJTPE Journal

www.iotpe.com

ijtpe@iotpe.com

June 2023 Issue 55 Volume 15 Number 2 Pages 168-174

168

WAVELETS TRANSFORM FOR SOFTWARE BUG LOCALIZATION

S. Zouairi M.K. Abdi

Department of Computer Science, University of Oran1 Ahmed BenBella, Oran, Algeria

ntssaim@aol.com, abdimk@yahoo.fr

Abstract- Nowadays, the cost of maintaining a large and

evolving IT project is constantly increasing and consumes

a lot of time and effort of the engineering team. Typically,

during the software maintenance step, a bug report is used

to investigate the location of a failure. After receiving a

bug report, it's appropriate to have an automatic way to

point out the files that the developer needs to change to fix

the problem. In our paper, we use a bug localization

approach, through the Information Retrieval (IR) field, to

represent textual data by signals, which will be used later

by the wavelet transform, a technique widely used in signal

processing, and whose use is still young in the IR field.

The results of the experiments conducted on the AspectJ

1.6.1 project affirm the adequacy of the proposed

approach. The analyses likewise show that the proposed

approach beats the Vector Space Model (VSM).

Keywords: Error Finding, Data Mining, Bug Issue,

Wavelets Transform, Program Maintaining, Software

Debugging.

1. INTRODUCTION

The term "software crisis", which refers to the general

situation that characterized software development failures,

appeared in the 1960s and 1970s. There are three main

causes of this phenomenon: - The complexity of the

software - Excessive user and customer expectations; and -

Changes to be made to software products. The paradox in

our time, and since the 60's, is the difficulty to produce

quality software at a good price and in a reasonable time.

The causes of the software crisis are numerous: First, there

are reasons related to the essence, to the very nature of

software, what we call the essential properties of software,

particularly its virtuality. Then there are reasons related to

the problems surrounding the production of the software,

what we call the accidental properties of the software, for

example the needs of the users which are constantly

changing, the demand for sophisticated functionalities, the

short delivery times, the inexperience of the developers,

etc. Famous software bugs (like the explosion of the

Mariner space probe in 1962, the Intel Pentium V bug in

1994) show that it is necessary to pay particular attention

to software development and its interaction with the

environment.

A bug can be defined as the appearance of an anomaly

in the software product that prevents it from performing its

functions or behave abnormally [1]. Upon the occurrence

of a malfunction of an operated program, a report is sent to

the technical team with the indications of the error, which

is then recorded in the bug database. Verifying the validity

of the bug is preceded by several steps, such as its

duplicate and validate state, and semantic content. The

developer is then credited with the error and examines the

data in the report to find the source files that need to be

changed to correct the problem. Typically, a description of

the bug, a summary of the faulty problem, software

version, stack traces, etc. are attached to the components

of the bug report. Table 2 provides an illustration.

It is the responsibility of the person receiving the bug

to locate and correct the root cause that triggered the

failure in the software project. Depending on the size of

the software project and the number of source files

involved, the manual localization process can take 30-40%

of the total time required to fix the problem [2]. As a result,

fixing bugs takes longer and the project is more expensive

to maintain.

Hence fixing problem task comprises implicit subtasks

like "bug understand", "bug validated", "identifying", and

"solving " the majority of the developer's time is spent on

the bug localization process [3, 4]. From this point of view,

bugs localization requires resorting to automated tools or

approaches to deal to this problem. The two main

categories of current localization methods are spectral-

based and information retrieval 'IR'-based [5]. The IR-

based strategy evaluates project sources and the

vocabulary (i.e., questions) used in bug reports to identify

bugs, while spectrum-based approaches may rely on the

results of ray runs [5].

The basic principle of these IR methods is that reports

are first considered as queries and the source files

considered are document collections. After sorting the

documents by predicted relevance, the IR approach

generates an ordered list of potential error source files [5].

A lot of the recommended methods for IR-based fault

localization automatically look for relevant files in

connection with issue reports [5-9]. A similarity function

serves as the foundation for this IR approaches, which give

as result a score to the document according a query and a

document passed as arguments. This score represents who

much the document is relevant to the query [5].

When representing documents and queries, some

strategies use vectors, where each word in the document

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 55, Vol. 15, No. 2, Jun. 2023

169

set has its own dimension in the vector space [5]. The

vector’s components are the linked term's frequency of

occurrence in the document. To have a score on likelihood

of relevance, we apply a similarity function on weights

between query and document vectors [10]. To convert a

document into vector, we consider only terms appearance

number in documents.

It is necessary for many applications to format data into

vector, this process is used in multi-dimensional

biomedical imaging, video and image processing, to

process audio and speech problems [5]. This preprocessing

step is necessary to several mathematical methods to

achieve our goal. One of these methods are wavelets

transform (WT) represents data or other functions by

vectors for specific mathematical applications (i.e.,

signals).

In the literature, the simplest case is the Haar wavelet.

In discrete form, it is called Haar transform [11]. Haar

transforms were mainly used for pattern recognition and

image processing due to their low computational

requirements [12], [13]. It should be noted that this method

is not frequently employed for IR bug localization.

Wavelet analysis has been applied in numerous

publications, such as in integral text information search,

software code clone detection [14], document information

retrieval [15], and picture processing [22]. data reduction

techniques for nonstationary data curves with possibly

enormous and complex shapes [16].

One major benefit of using wavelet transform is the

computational complexity that is only O(N)

multiplications [17]. We can use fewer resources by

reducing the amount of project data processed in each

transformation by two factors. This justifies the use of

wavelet techniques in ‘IR’-based fault localization, which

is rare in this field.

Our study tries to fulfil this research gap, in order to

answer the subsequent main research question: How

effective are wavelets transform for bugs localization?

This study evaluates the value of the wavelet transform

in locating faults. To do this, we develop a tool called

BugLocWT that uses Haar transforms to describe text data

as signals and rank relevant files. The remaining sections

of the work are structured as follows: section 2 lists related

works, section 3 discusses wavelets, the suggested

approach, and the methods used to carry out the study.

Section 4 presents the findings and subsequent debates,

and section 5 brings this study to a close.

2. RELATED WORKS

Generally, automated bug localization approaches fall

into two parts: the dynamic approach and the static

approach. In dynamic approach, program semantics and

information of its execution are used. There are two

methods: model-based fault location and "spectrum-

based" fault location. This type of strategy is used by Saha

et al., and his tool BLUiR (Bug Localization Using

Information Retrieval), examines source code structure

information such as comments, class names, methods, and

variables to improve translation accuracy [9].

The static approaches depend only on the bug reports

information and on the program code, and can be arranged

in two classes: IR-based and program analysis. Bug

localization with program analysis-based approach need

predefined bug template. Hovemeyer, et al. [18] proposed

a model named FinBugs using this approach

Techniques like Naive Bayes, VSM, rVSM, TF-IDF,

LSA and LDA [19], can be contained in the IR-based type

or Machine Learning approaches. These techniques

implement Learning-To-Rank IR issue for the bug

localization question.

Rao, et al. [6] adopt for bug localization the VSM

methods. The cosine similarity between phrases in the

documents is the key concept behind this technique. BLIA

(Bug Localization with Integrated Analysis) is a program

created by Youm, et al. [20] that uses the text and stack

traces in bug reports and source code change histories. The

tool BugLocator was introduced by Zhou, et al. [21], by

doing an automatic search for pertinent files under an

initial bug report. file ranking, this tool explores the

revised Vector Space Model (rVSM).

The present work is in line with the previous work and

proposes the tool called BugLocWT, it borrows from

signal processing field that map textual data to signals. To

achieve this, we use a mathematical theory of the signal

called the wavelet transform, which is currently largely

unused in the IR range.

3. METHODS

In the following section, we will not dwell on the

theory of wavelets, but give an overview of this theory. For

a deeper insight, the reader is directed to the literature [22],

[11], [23].

3.1. The Haar Wavelets Transform

The wavelet transform is a tool that cuts up data or

functions or operators into different frequency

components, and then studies each component with a

resolution matched to its scale.

Historically, the first orthonormal wavelet basis is the

Haar basis, constructed long before the term "wavelet". It

was developed by the mathematician Alfred Haar, and

have been in use since 1910 [24], for additional

information, see wavelets transform [23], [25], [22]. The

Haar transform is a mathematical operation that is related

to Haar wavelets in discrete form. All other wavelets

transforms are based on the Haar transform.

The key words for the Haar transform, defined in

section 3.3, are presented in this part, along with examples

of how the Haar transform is commonly applied for bug

localization.

In this work, we projected vectors (functions of time

with values occurring at discrete points in time) as discrete

signals. A discrete signal can usually be represented as S=

(s1, s2…, sN), where N is a positive even integer equal to

the length of S. S's values s1, s2…, sN are logically real

numbers. These values are typically measurements of an

analogue signal g taken over time. In short, the values of

S are:

1 1()s w t= , 2 2()s w t= ,..., ()N Ns w t= (1)

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 55, Vol. 15, No. 2, Jun. 2023

170

The Haar transform proceeds to the decomposition of

a discrete signal S by generating two signals of half its

length. The first resulting signal is formed by the averages,

the second is formed by the differences, resulting from the

decomposition.

For the signal S , we calculate the first trend (average

or mean) sub signal 1
1 2 /2(, ,....,)Na a a a= by taking a

running average as follows:

Its initial value 1a , is calculated by averaging the first

two values of S which is (s1+s2)/2, and then multiplying it

by 2 , the result is 1 1 2() / 2a s s= + . In this manner of

iteration, all values of
1a are calculated by averaging

successive pairs of values of S multiplied by 2 .

A general equation for the values of
1a is

()2 1 2

2

m m
m

s s
a

− +
= (2)

for m=1, 2, …, N/2

For example, suppose S is defined by S= (8, 8, 4, 0, 5,

3, 7, 1); Then its first average sub signal is
1 (8 2,2 2,4 2,4 2)a = .

The first fluctuation is the second sub signal

(difference). It is possible to calculate the signal S 's first

fluctuation, designated by 1
1 2 /2(, ,....,)Nd d d d= , by

taking a running difference in the manner shown below.

The first term 1d is calculated by taking the difference

between the first half pair of 1 2() / 2S s s= − values and

multiplying it by 2 . The subsequent value is

3 4
2

()

2

s s
d

−
= , and so on. Thus, all

1d values are

calculated using the Equation (3):

()2 1 2

2

m m
m

s s
d

− −
= (3)

for m=1, 2, …, N/2

For example, for the signal S= (8, 8, 4, 0, 5, 3, 7, 1)

considered above, its first fluctuation d1 is

(2 2,2 2, 2,3 2) .

3.2. Haar Transform Multiresolution

Several decompositions of the Haar transform are

carried out (stages, or levels). The mapping H1, which is

the first decomposition, is described by:

()1 1 1H
S a d⎯⎯→ (4)

It follows that the Haar transform 1-level for the signal

S= (8, 8, 4, 0, 5, 3, 7, 1) is as showed above

() 1

1)

8

(8 2, 2 2, 4 2, 4 2 2 2, 2 2, 2,

, 8, 4, 0, 5, 3,

2

 7,

3

1
H

H

⎯⎯→

⎯⎯→

The next 2-level for the signal S, which is

(10,8 0, 2)S = − , are obtained by repeatedly using the

Equations (2) and (3). Repeat this method once more until

the entire decomposition is obtained, as shown in Table 1.

Table 1. decomposition process results of the Haar wavelet for signal S

Level Averages differences

1 (8 2, 2 2, 4 2, 4 2) (2 2, 2 2, 2,3 2)

2 (10, 8) (0, -2)

3 (9 2) (2)

We can carry on with this process up to level P, where

there is one average and one difference coefficient, if the

length S is N=2P (in the example shown P=3). Lastly, S's

wavelet transform is ()9 2, 2,0, 2,2 2,2 2, 2,2 2 ,−

this process is called multiresolution analysis.

3.3. Proposed Methodology

In order to use the AspectJ Eclipse

(www.eclipse.org/aspectj/) project for empirical analysis,

we need to prepare data for both source code files and bug

reports. This pretreatment has five phases. File assembly,

corpus building, indexing, query formulating, retrieve and

rank step.

Data preprocessing is required for both the source code

files and the bug reports in order to use the AspectJ Eclipse

(thttps://www.eclipse.org/aspectj/) project for the

empirical evaluation. This preprocessing entails five steps:

files assembly, corpus building, indexing, query

formulation, and retrieval and ranking. In general, the

structure of BugLocWT for bug localization is shown in

Figure 1. An illustration of the IR bug localization strategy

is provided in this section through an example. A real bug

report (ID: 28974) for AspectJ version 1.6.1 can be seen in

Table 2.

3.3.1. Module Description

3.3.1.1. Files Assembling

In order to speed up the bug-finding process, we

removed all comments from files and group them in one

repository.

3.3.1.2. Corpus Creation

Word tokenization, a useful function from Natural

Language Processing, is performed for creating corpora;

for further information, see [26], Each source code file

undergoes a lexical analysis to provide a vector of lexical

tokens. Some tokens are eliminated since they are used by

all programs, including separators, operators, and

keywords (such as int, double, char, etc.). The removal of

English "stop words" (such as "a," "the," and similar

words), punctuation, whitespace, tabs, and carriage return,

this lowers the volume of data that is converted.

Table 2. A bug report for bug id 28974

(https://bugs.eclipse.org/bugs/show_bug.cgi?id=28974)

BugID 28974

resume Compiler error when introducing a ""final" " field

Status RESOLVED FIXED

Reported 2003-01-03 10:28 EST by Adrian Colyer

Product AspectJ

Component Compiler

Version 1.6.1

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 55, Vol. 15, No. 2, Jun. 2023

171

Description

The aspect below fails to compile with 1.1b2,
producing the compilation error: -------------------- $ ajc

com/ibm/amc/*.java com/ibm/amc/ejb/*.java

d:/eclipse/runtime-workspace-ajsamples/Mock
EJBs/com/ibm/amc/DemoBeanEJB.java:1: Cannot

assign a value to the final field

com.ibm.amc.DemoBean.ajc$interField$co
m_ibm_amc$verbose !! no source information

available!! 1 error --------------------------- package

com.ibm.amc; import com.ibm.amc.ejb.SessionBean;
/** * @author colyer ------------------- Making the

inter-type declaration non-final solves the problem...

Fixed 2003-01-14 14:30 EST

Fixed files
org.aspectj/modules/weaver/src/org/aspectj/weaver/Ajc

MemberMaker.java

3.3.1.3. Indexing

All of the files in the corpus are indexed once it has

been produced. To do this, each file is given a length

(term’s number), and the entire collection of AspectJ

source code files is then indexed using a top-down method.

3.3.1.4. Query Construction

In order to create the query vector, which will be used

to look for pertinent files. The vector query is created by

word tokenizing the bug's name and text that describe it in

the same way as was done while building the corpus.

3.3.1.5. Retrieval and Ranking

When scores for each file in the corpus have been

determined, we use the Haar transform of the query and

each file to retrieve and rank the relevant buggy files. The

bag of words paradigm is applied to any collection of

documents [27]. The sequence of the terms in a text is

disregarded in this stage, but the frequency with which

each term appears is counted. Application of the Haar

transform on a file resulted in a vector with components

corresponding to each keyword in the query. The process

of calculating the score is modeled around [27]'s chapter

6, section 6.3.3. The score of a file is determined by

dividing the total number of vector components created by

the Wavelets transforms by the vector's length.

3.4. How to Localize Bugs with Wavelets

Here, we explain the approach used for locating the

relevant items files that match a specific query.

Figure 1. Structure of BugLocWT

3.4.1. Pseudo Algorithm

The actual study, BugLocWT was developed using

Python 3.6. that includes tools for programming computers

to comprehend human language and respond

appropriately.

Algorithm 1. Pseudo Algorithm

BeginAlgorithm
1- Token vector creation

1k =

Do while k m

calculate 1 2_ , ,..., ,..., k i nvect File w w w w

 1k k= +

EndDo

 keyword i kw File

2 - Creating pertinent vector for query vector tokens for each file

For j=1, m, compute vect_ReqFilej [Tfwq1, Tfwq2, .., Tfwqi,..,

Tfwqn]

Where:
 if _

0 otherwisei

i
wq

Termfequency w vect query
Tf

=

 ki Fwq ile

3- Applying wavelets transforms

 1p =

Do wile p m

 calcultate wavedec (vect_ReqFilep)

 1p p= +

EndDo

 according to equations (2) and (3)

4- Scoring all m documents

1t =

Do while t m

()_ _ _ Re
jj

Score File Haar Transform vect qFile Components=

1t t= +

EndDo
EndAlgorithm

Some of these packages include tokenization,

stemming, lemmatization, punctuation, character count,

and word count. PyWavelets using the Python

programming language is available for free and is Open

Source.

3.5. Approach Validation with Metrics

The following metrics were used, in order to judge the

effectiveness of the proposed bug tracking method:

• Top N Rank, represents the number of bugs whose

associated files are ranked at the top N (N= 1, 5, 10, 20) of

returned results. Given a bug report, if the first N results of

the query contain at least one file to which the bug should

be fixed, we consider that the bug is localized. The higher

the value of the metric, the better the bug localization

performance.

• MRR (Mean Reverse Rank), is a measure that allows the

evaluation of a process generating a list of possible

answers to a query. For a set of query Q, it is given by

Equation (5):

1

1 1
Q

ii

MRR
Q rank=

= (5)

The higher the MRR value, the better the bug

localization performance.

Document

collection File

size

Index

New bug

report

Query

Construction

Corpus

creation

Query

All Corpus

Wavelets

multi

resolution

decomposi

Compute

Score Scores
Wavelets

coefficient for all

Corpus

 indexing

Ranked

Files

Files

assembling

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 55, Vol. 15, No. 2, Jun. 2023

172

• MAP (Mean Average Precision), which provides a single

digit measure of information retrieval quality. The average

precision of a query (AvgP) is the average of the precision

values obtained for the query, which is calculated as

follows:

1

1
@

M

i

i

avgP P i rel
GTP =

= (6)

where,

GTP: Ground True positive

P@i: precision at rank i

reli: rank of the ith relevant document

M: number of returned documents

Then MAP for a set of query Q is:

1

Q

ii
avgP

MAP
Q

==

 (7)

Table 3. Top ranking pertinent files related to bug report ID 28974 with BugLocWT tool

Rank File name Score

1 D:/Data1_DW/file_copied\AjcMemberMaker.java 0.7092239

2 D:/Data1_DW/file_copied\FieldGet.java 0.58876

3 D:/Data1_DW/file_copied\BcelField.java 0.4244899

4 D:/Data1_DW/file_copied\ConditionalFlowInfo.java 0.3417179

5 D:/Data1_DW/file_copied\DOMField.java 0.3270305

6 D:/Data1_DW/file_copied\SelectionRequestor.java 0.299778

7 D:/Data1_DW/file_copied\FieldGetCall.java 0.29438

8 D:/Data1_DW/file_copied\JobManager.java 0.2861517

9 D:/Data1_DW/file_copied\ProblemReporter.java 0.2768924

10 D:/Data1_DW/file_copied\CodeSnippetScope.java 0.2675704

11 D:/Data1_DW/file_copied\CompletionEngine.java 0.2663975

12 D:/Data1_DW/file_copied\QualifiedNameReference.java 0.2385462

13 D:/Data1_DW/file_copied\LazyClassGen.java 0.2277787

14 D:/Data1_DW/file_copied\AjcCompilerAdapter.java 0.2262577

15 D:/Data1_DW/file_copied\SetContainerOperation.java 0.2218946

16 D:/Data1_DW/file_copied\ConstructorLocator.java 0.2180203

17 D:/Data1_DW/file_copied\Ajc.java 0.2147939

18 D:/Data1_DW/file_copied\AjTypeImpl.java 0.2094218

19 D:/Data1_DW/file_copied\FieldSignatureImpl.java 0.2061156

20 D:/Data1_DW/file_copied\UserLibraryClasspathContainerInitializer.java 0.2061156

21 D:/Data1_DW/file_copied\ExactAnnotationFieldTypePattern.java 0.1968944

22 D:/Data1_DW/file_copied\TypeDeclaration.java 0.1884213

23 D:/Data1_DW/file_copied\AddJarFileToIndex.java 0.1838055

24 D:/Data1_DW/file_copied\SetVariablesOperation.java 0.1664209

25 D:/Data1_DW/file_copied\InstructionShort.java 0.1648528

26 D:/Data1_DW/file_copied\EclipseResolvedMember.java 0.1635153

27 D:/Data1_DW/file_copied\InterTypeMemberFinder.java 0.1584026

28 D:/Data1_DW/file_copied\JavadocRunner.java 0.1583571

29 D:/Data1_DW/file_copied\BasicSearchEngine.java 0.1581298

30 D:/Data1_DW/file_copied\JRockitAgent.java 0.1545867

DCG (Discounted Cumulative Gain) measures the

utility or gain of a document based on its position in the

result list. The gain is accumulated from the top of the

result list downwards, with the gain of each result reduced

to the lower ranks. DCG focuses on highly relevant

documents that appear early in the results list using the

logarithmic scale for reduction. DCG is the measure of

document classification quality. It is primarily used in

information retrieval problems such as measuring the

effectiveness of the search engine algorithm in ranking the

articles it displays based on their relevance in terms of the

search keyword. It is given with Equation (8):

()21 log 1

k
i

k

i

rel
DCG

i=

=
+

 (8)

4. RESULTS AND DISCUSSIONS

4.1. Evaluation

The 1844 files of the AspectJ 1.6.1 project were used

to evaluate the performance of BugLocWT. Table 4

displays the proportion of Top N using both the Haar

Wavelets Transform (WT) and the VSM.

Table 4. Applying WT and VSM to rank pertinent files on AspectJ

project

 Top 5% Top 10% Top 15% Top 20% Top 30%

Haar transform 13.33 36.66 63.33 76.66 90

VSM 0 3.33 13.33 20 53.33

According to Table 4, the top 5, top 10, top 15, and top

20 files with BugLocWT are significantly higher than

those with VSM technique. It results those wavelets

provided a better position for pertinent; this allows to help

the team project in locating the troubling files and then

eliminating the bug that has occurred.

According to Table 2, the “AjcMemberMaker.java”

file is the subject of bug report ID 28974. The latter is

listed as the most important file in position one Table 3.

Additionally, as shown in Figure 2, each bug complaint

addressed by our tool BugLocWT has a location of the

relevant file that is fewer than 30. This guarantees the

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 55, Vol. 15, No. 2, Jun. 2023

173

software maintenance project will be time and cost

efficient.

➢ RQ: How well does the wavelets transform work for

pinpointing bugs? Table 4 shows relevant file rank score

with their bugs using Wavelet and VSM. According to the

experimental findings, the proposed WT approach works

better than the VSM method. For instance, in our AspectJ

experiment, we discovered that the relevant source files for

only (13.33%) of the top 5 results, (36.66%) of the top 10

results, and (63.33%) of the top 15 results were returned

utilizing the proposed WT technique. While those values

are (0%), (3.33%), and (13.33%) accordingly with the

VSM technique.

Figure 2. relevant file rank score with their bugs using Wavelet and
VSM

Since our tool use IR base bug localization techniques,

it is suitable to validate our approach with some metrics.

In Table 5, we can notice that the MRR values following

the wavelet localization approach is better than the one

following the Vector Space models.

Table 5. The effectiveness of bug localization using VSM and WT

Method MRR MAP DCG/Top50

WT 0.09192124 0.04974732 64

VSM 0.05064554 0.04592643 44

Moreover, we can see this difference by a visualization

of Figure 3, which shows in the histogram diagram a clear

difference in the scales of the values MRR and MAP of the

localization via wavelets and the vector model.

Figure 3. MRR and MAP values WT and VSM

When talking about important relevant files retrieved,

it is normally suitable to have these document in top list,

these is what Discounted Cumulative Gain (DCG) metric

can provide. As shown in Table 5, DCG/Top50 value is 64

according to the Wavelets bug localization approach,

which is significantly better than DCG value according to

VSM approach. Figure 4 provides a screenshot of these

evaluation, as show how bug localization with wavelet is

useful compared with VSM technic.

Figure 4. DCG values WT and VSM

5. CONCLUSION
Throughout the use of software, users are confronted

with numerous bugs. When the engineering team receives

a new bug report, the person who was assigned the report

has to identify the files that need to be modified to fix the

bug. However, this task will consume a lot of time to find

the files to be modified, especially if it is done manually

and for a large project.

This work proposes a bug localization tool named

BugLocWT, to classify the relevant files from the initial

bug report. The contribution is based on information

extraction, using Wavelet Transforms. Experimental

results on AspectJ project show that the BugLocWT tool

allows a significant localization compared to the one based

on vector space models (VSM). Future research will

examine the utility of additional Wavelet Transforms in IR

to enhance this theory's effectiveness in the areas of data

mining and bug localization.

REFERENCES

[1] E.J. Braude, M.E. Bernstein, “Software Engineering:

Modern Approaches”, Waveland Press, p. 802, 2016.

[2] S.S. Murtaza, A. Hamou Lhadj, N.H. Madhavji, M.

Gittens, “An Empirical Study on the Use of Mutant Traces

for Diagnosis of Faults in Deployed Systems”, Journal of

Systems and Software, Vol. 90, pp. 29-44, 2014.

[3] K.H. Chang, V. Bertacco, I.L. Markov, “Simulation-

Based Bug Trace Minimization with BMC-Based

Refinement”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Issue 1, Vol.

26, pp. 152-165, 2006.

[4] S. Kottam, V. Paul, “Soft Set Based Approach for

Mining Frequent Item Sets”, International Journal on

Technical and Physical Problems of Engineering (IJTPE),

Issue 45, Vol. 12, No. 4, pp. 50-56, December 2020.

[5] Z. Shi, J. Keung, K.E. Bennin, X. Zhang, “Comparing

Learning to Rank Techniques in Hybrid Bug

0

25

50

75

100

125

150

175

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

in
d

ex
 relev

an
t file

bug report treated

Haar transform VSM

MRR MAP

WT VSM

0

20

40

60

80

DCG/Top50 WT VSM

0.1

0.08

0.06

0.04

0.02

0

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 55, Vol. 15, No. 2, Jun. 2023

174

Localization”, Applied Soft Computing, Vol. 62, pp. 636-

648, 2018.

[6] S. Rao, A. Kak, “Retrieval from Software Libraries for

Bug Localization: A Comparative Study of Generic and

Composite Text Models”, The 8th Working Conference on

Mining Software Repositories (ACM), pp. 43-52, 2011.

[7] T.D.B. Le, R.J. Oentaryo, D. Lo, “Information

Retrieval and Spectrum-Based Bug Localization: Better

Together”, The 10th Joint Meeting on Foundations of

Software Engineering, pp. 579-590, 2015.

[8] S. Wang, D. Lo, “Version History, Similar Report, and

Structure: Putting them Together for Improved Bug

Localization”, The 22nd International Conference on

Program Comprehension, pp. 53-63, 2014.

[9] R.K. Saha, M. Lease, S. Khurshid, D.E. Perry,

“Improving Bug Localization Using Structured

Information Retrieval”, The 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

pp. 345-355, 2013.

[10] H. Taher, M. Abdulameer, B. Mahdi, “Information

Retrieval Scheme Via Similarity Technique”, International

Journal on Technical and Physical Problems of

Engineering (IJTPE), Issue 51, Vol. 14, No. 2, pp. 375-

379, June 2022.

[11] J.S. Walker, “A Primer on Wavelets and their

Scientific Applications”, Chapman and hall/CRC, 2008.

[12] F.B.J. Stankovic, S. Radomir, “The Haar Wavelet

Transform: Its Status and Achievements”, Computers and

Electrical Engineering, Vol. 29, pp. 25-44, 2003.

[13] N. Shyamala, S. Geetha, “Improved Integer Wavelet

Transform (IIWT) Based Medical Image Compression

Method”, International Journal on Technical and Physical

Problems of Engineering (IJTPE), Issue 51, Vol. 14, No.

2, pp. 339-346, June 2022.

[14] S. Karus, K. Kilgi, “Code Clone Detection Using

Wavelets”, The IEEE 9th International Workshop on

Software Clones (IWSC), pp. 8-14, 2015.

[15] M.Y. Dahab, M. Kamel, S. Alnofaie, “An Empirical

Study of Documents Information Retrieval Using DWT”,

Intelligent Natural Language Processing: Trends and

Applications, Springer, pp. 251-264, 2018.

[16] M.K. Jeong, J.C. Lu, X. Huo, B. Vidakovic, D.L.

Chen, “Wavelet-Based Data Reduction Techniques for

Process Fault Detection”, Technometrics, Vol. 48. pp. 26-

40, 2006.

[17] O. Maimon, L. Rokach, “Data Mining and

Knowledge Discovery Handbook”, Springer-Verlag, p.

1306, 2005.

[18] D. Hovemeyer, W. Pugh, “Finding Bugs is Easy”,

ACM SIGPLAN notices, Issue 12, Vol. 39, pp. 92-106,

2004.

[19] R. Khoury, C. Drummond, “Advances in Artificial

Intelligence” The 29th Canadian Conference on Artificial

Intelligence, Canadian AI 2016, Springer, Vol. 9673, p.

362, Victoria, BC, Canada, May-June 2016.

[20] K.C. Youm, J. Ahn, J. Kim, E. Lee, “Bug Localization

Based on Code Change Histories and Bug Reports”, Asia-

Pacific Software Engineering Conference (APSEC), pp.

190-197, 2015.

[21] J. Zhou, H. Zhang, D. Lo, “Where Should the Bugs

be Fixed? More Accurate Information Retrieval-Based

Bug Localization Based on Bug Reports”, The 34th

International Conference on Software Engineering (ICSE).

pp. 14-24, 2012.

[22] A. Graps, “An Introduction to Wavelets”, IEEE

Comput. Sci. Eng., Issue 2, Vol. 2, pp. 50-61, 1995.

[23] D.F. Walnut, “An Introduction to Wavelet Analysis”,

Springer Science and Business Media, pp. 115-140, 2013.

[24] R.S. Stankovic, B.J. Falkowski, “The Haar Wavelet

Transform: Its Status and Achievements”, Computers and

Electrical Engineering, Issue 1, Vol. 29, pp. 25-44, 2003.

[25] Z. Abba, P. Rain, “A Study on Applications of

Wavelets to Data Mining”, International Journal of

Applied Engineering Research, Issue 12, Vol. 13, pp.

10886-10896, 2018.

[26] C.D. Manning, H. Schutze, “Foundations of

Statistical Natural Language Processing”, MIT Press, p.

704, 1999.

[27] C. Manning, P. Raghavan, H. Schutze, “Introduction

to Information Retrieval”, Cambridge University Press, p.

506, 2008.

BIOGRAPHIES

 Name: Saim

Surname: Zouairi

Birthdate: 09.02.1973

Birth Place: Oran, Algeria

Bachelor: Computer Engineer,

Department of Computer Science,
University of Sciences and Technology of

Oran, Oran, Algeria, 1996

 Master: Risk and Materials Sciences, University of Oran,

Oran, Algeria, 2009

Doctorate: Student, Computer Science, Department of

Computer Science, University of Oran1 Ahmed BenBella,

Oran, Algeria, Since 2015

Research Interest: Software Testing and Debugging,

Natural Language Processing, Reverse Engineering

Name: Mustapha Kamel

Surname: Abdi

Birthdate: 04.03.1966

Birth Place: Oran, Algeria

Bachelor: Computer Science, Computer

Engineering, Computer Science

Department, Oran1 University, Oran,

Algeria, 1990

Master: Computer Science/ Master of Computer Science,

Computer Science Department, Oran1 University, Oran,

Algeria, 1995

Doctorate: Computer Science, Computer Science

Department, Oran1 University, Oran, Algeria, 2007

The Last Scientific Position: Prof., Computer Science

Department, Faculty of Exact and Applied Sciences,

Oran1 University, Oran, Algeria, Since 2020

Scientific Publications: 25 Papers, 3 Projects, 6 Thesis

Scientific Memberships: Member of Program Committees

of Several National and International Conferences

