
 
 

International Journal on 
 

“Technical and Physical Problems of Engineering” 
 

(IJTPE) 
 

Published by International Organization of IOTPE 

ISSN 2077-3528 
 

IJTPE Journal 
 

www.iotpe.com 
 

ijtpe@iotpe.com 
June 2023 Issue 55 Volume 15 Number 2 Pages 330-334 

 

330 

INVESTIGATION OF RELATIONSHIP BETWEEN MANUFACTURING 
PARAMETERS AND PHASE TRANSITION TEMPERATURE 

 
M.B. Babanli     C.A. Imamalizade 

  
Azerbaijan State Oil and Industry University, Baku, Azerbaijan, pr.asoiu@asoiu.edu.az, cimamelizade@gmail.com 

 
 

Abstract- It is known that nitinol is a promising 
functional material that is used in aerospace, 
bioengineering, medicine and other fields of modern high 
technologies. In this work, the dependence of the 
transition temperature on the processing conditions 
during the synthesis of NiTiHf alloy, a modification of 
nitinol, which has a wide application field, was 
investigated by using Machine Learning (ML) methods, 
and certain theoretical results were obtained. In addition, 
suggestions were made to improve the obtained results.    
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1. INTRODUCTION  
Over the past 30 years, materials science has made 

significant development in the field of data generation. As 
a result, huge amounts of data are collected in different 
data sources related to material science [1-4]. To manage 
and use this data effectively Big Data term was added. Big 
data is a collection of unstructured, semistructured and 
structured data accumulated by world organizations that 
can be extracted for information and applied in predictive 
modeling, machine learning projects and other advanced 
data science-based applications [5]. ML (Machine 
learning) is a field that can deal with big data and meets 
the requirements of scientists and engineers the in modern 
world. Machine learning is the science where different 
regression, classification or statistical algorithms are 
developed depending on given target and data. ML 
methods play an important role in solving actual problems 
in the field of materials science [6-11]. One of these 
problems is the synthesis of new types of alloys based on 
finding an effective relationship between various 
characteristics of alloys. For instance, ML is used to 
detect and develop alloys with narrow thermal hysteresis 
in parallel with the optimization of thermal hysteresis and 
transition temperatures.  

ML methods consist of 2 main subsets: Shallow 
Learning and Deep Learning. Shallow learning methods 
belong to classic ML methods and are designed to work 
with relatively small amounts of data. Shallow learning 
methods include algorithms such as Linear Regression, 
Logistic Regression, Random Forest, Support Vector 
Machine (SVM) and Gaussian process regression. Deep 

learning methods refer to methods based on modified 
artificial neural networks and are designed to work with 
large-scale data. Deep learning methods include 
algorithms such as Multi-Layer Perceptron (MLP), Long 
Short-Term Memory (LSTM) Convolutional Neural 
Network (CNN), Recurrent Neural Network (RNN), and 
Deep Belief Network (DBN) [12-16]. 

Shape memory alloys belong to alloys that can recover 
their original shape and size during phase transformation. 
One of the most common shape memory alloys is NiTi 
(nitinol) and NiTi-based alloys. Nitinol consists of 
approximately equal amounts of Ni and Ti elements and is 
widely used in the development of cardiovascular stands, 
micro activators, and in the fields related to damping 
instruments. Interest to Nitinol started in 1972 when 
William Bulher and Frederick Wang found the shape 
memory effect of NiTi-based alloys during working in 
military laboratory [17]. Nitinol has two unique 
properties: thermal shape memory effect and super 
elasticity which makes it promising for use in various 
industries [18-21]. The mechanism of shape memory 
effect is shown in Figure 1, while mechanism of super 
elasticity is presented in Figure 2 [18].   

Many scientific works and articles have been 
published in the field of synthesis of nitinol and its alloys 
by ML methods [22-28]. Analyzing the research 
conducted in this field in recent years, it can be concluded 
that the most important characteristics during the 
synthesis of nitinol are transition temperatures and 
thermal hysteresis. Numerous works and researches 
devoted to this field show that the transition temperatures 
during the synthesis of nitinol are affected not only by the 
composition of the alloy but also by its processing 
conditions. Gauss Process Regression was used for the 
synthesis of NiHiHf in [23].  

The Pearson correlation method was applied to find 
correlation between input features and temperatures. 
Then thermal hysteresis and average transition 
temperatures were predicted with higher accuracy by 
using not only structural but also processing features of 
alloy and confirmed by physics-informed feature 
engineering. High results were obtained by taking into 
account the processing parameters of NiHiHf using 
artificial neural network in [24]. Unlike previous work, 
most of the input data features consist of processing 
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condition and just atomic percentage of elements in 
NiTiHf alloy were used in the calculation. High accuracy 
was gained by Neural Network as regression algorithm. 
Shallow learning algorithms were applied to find 
transition temperatures of NiTiHf [25]. Results of each 
method were compared among each other and discussed.  
Deep Learning was applied to predict the conventional 
yield strength, conventional tensile strength and unit 
elongation of binary nitinol [26]. As a result, Deep 
Learning showed higher accuracy compared with 
Random Forest which also was applied in this article. 

 

 
 

Figure 1. Mechanism of shape memory effect [28] 

 

 
 

Figure 2. Mechanism of super elasticity [28] 

 

2. EXPERIMENTAL PART 
In this work, the dependence of processing conditions 

on the transition temperatures in an alloy based on nitinol 
was studied using classical ML methods. The calculations 
were carried out on the Jupyter Notebook online platform 
based on Python 3.9.1. In parallel with the classical 
methods of ML, the expediency of using deep learning 
methods (Deep Learning) is proposed. To determine the 
dependence of the transition temperature on the 
processing parameters, the data were divided into 70% 
(training sample for calculating the dependence) and 30% 
Data was taken from [28] work (Table 1). 

Before starting create regression we need to better 
understand correlation between phase temperature and 
manufacturing parameters. 

For that we apply Pearson correlation matrix (Figure 
3). As we can see from the matrix Width and P are 
strongly positive correlated with Af (0.6-0.79). Eν and 
Relative density have positive moderate correlation with 
Af (0.4-0.59). Only Width and SS has weak positive and 
weak negative correlation respectively (0.2-0.39). 

The data used to run the algorithms are taken from 
[20]. 

Linear regression, Support Vector Machine and Gauss 
Process Regression (GPR) applied as regression 
algorithms. The accuracy measure of algorithm is 
demonstrated with R2 (Coefficient of determination) and 
MAE (Mean Absolute Error) which calculation formula 
given by [23, 29]. 
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where, ˆiy  is predicted value, yi is actual data, iy  is the 

mean value of output data, and i amount of data used in 
samples. 

 

 
 

Figure 3. Pearson correlation matrix 
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Based on experimental and predicted data, Figure 4 
and represents graphical results of regression algorithms 
used in train sample, while Figure 5 and illustrates 
graphical results of regression algorithms used in test 
sample. Regression results briefly showed in Table 2. 
Linear Regression between processing conditions and 
transition temperature shows R2=83.5% accuracy and 
20.06 K MAE for train data and R2=68.4% accuracy and 
41.36 K MAE for test data (Figures 3a and 4a). 

Gauss Process Regression between processing 
conditions and transition temperature shows R2=80.4% 
accuracy and 22.67 K MAE for train data and R2=78% 
accuracy and 31.55 K MAE for test data (Figures 3b and 
4b). Support Vector Regression between processing 
conditions and transition temperature shows R2=81.8% 
accuracy and 19.45 K MAE for training data and 
R2=74.5% accuracy and 34.82 K MAE for test data.  

Linear kernel was used during regression because of 
higher accuracy compared to other kernel algorithms 
(Figures 3c and 4c). from the computed results, the higher 
accuracy in training sample belongs to Linear Regression. 
However, in test sample accuracy decreased from 
R2=83.5% to R2=68.4% and MAE from 22.67 K to 41.36 
K which worst results among compared algorithms. 

 
Table 1. Data used in regression algorithm 

 

No. P (w) 
H 

(μm) 
SS 

(mm/s) 
Eν 

(J/mm3) 
Width 
(mm) 

Relative 
density (%)

Af 
(°С)

1 100 140 200 119 4.72 99.96 154
2 135 120 400 93.7 4.58 99.63 256
3 210 120 400 145.8 4.6 98.39 332
4 135 80 800 70.3 4.33 96.83 143
5 175 100 600 97.2 4.61 96.82 157
6 250 120 1000 69.4 4.08 98.82 254
7 200 60 1000 111.1 4.28 97.82 276
8 100 140 400 59.52 4.42 96.98 210
9 150 60 1000 83.3 4.26 96.16 187
10 150 80 200 313 4.92 99.14 353
11 250 120 200 347.2 5.05 97.67 378
12 210 80 400 218.7 4.72 98.74 347
13 250 140 466.7 127.5 4.51 98.19 327
14 100 60 1000 55.5 4.09 91.01 119
15 250 60 1000 138.9 4.25 98.10 304
16 250 60 733.3 189.4 4.5 97.80 331
17 200 140 200 238.1 4.74 98.76 348
18 210 120 800 72.9 4.34 97.76 258
19 250 140 1000 59.5 4.09 98.08 255
20 100 60 733.3 75.7 4.38 97.68 146
21 100 80 200 208.3 4.8 97.36 144
22 100 120 200 138.9 4.78 97.87 150
23 100 60 200 277.8 4.8 98.50 280
24 210 80 800 109.4 4.41 98.24 294
25 250 140 733.3 81.7 4.36 98.24 288
26 250 60 466.7 297.7 4.66 99.20 363
27 150 140 200 178.6 4.78 98.67 332
28 250 140 200 297.7 5.95 98.52 346
29 250 80 1000 104.2 4.25 98.23 294
30 135 80 400 140.6 4.58 97.31 239

 
Similar to Gauss Process Regression, Support Vector 

Regression, shows nearly the same accuracy in both train 
and test samples R2=81.9%, 19.45 K MAE and 
R2=74.5%, 34.82 K MAE respectively. Obtained higher 
accuracy by using linear kernel emphasize that both train 
and test samples can be linearly separable.   

Gauss Process Regression shows nearly the same 
accuracy in both train and test samples R2=80.4%, 22.67 
K MAE and R2=78%, 31.55 K MAE, respectively. As a 
result, this algorithm is preferable than others. The 
obtained results show the necessity for further research in 
this field. 
 

Table 2. Regression results of models 
 

Regression model 

Metrics 
(Accuracy)

svm.lin Linear regression GPR
Train data 81.8% 83.6 % 80.4%
Test data 74.5 % 68.4 %  78%

Regression model 

Metrics 
(MAE)0 

Data type svm.lin Linear regression GPR
Train data 19.45 K 20.06 K  22.67 K
Test data 34.82 K  41.36 K 31.55 K

 

 
 

 

 
 

Figure 4. Regression graphs of used algorithms (train sample), (a) 
Linear Regression, (b) Gauss Process Regression, (c) Support Vector 

Regression 
 

3. CONCLUSIONS 
In this work, influence of processing conditions to 

transition temperature of NiTiHf alloy, was investigated 
by using Machine Learning (ML) methods, and gained 
results was compared among each other. Obtained results 
was demonstrated as graphs and tables. The results can be 
used during manufacturing of NiTi based alloys which 
show shape memory and super elasticity properties. 
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Figure 5. Regression graphs of used algorithms (test sample), (a) Linear 
Regression, (b) Gauss Process Regression, (c) Support Vector 

Regression 
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