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Abstract- A wide range of studies treating the variation of 

solar cell performance is usually based on a simple 

approach that uses a uniform irradiation distribution. 

However, the flux arriving on the surfaces of solar cells is 

often not uniform, either because of obstacles (shading 

effect) or solar concentrators. In this paper, we will 

describe and study the effect of the non-uniformity of 

irradiation on the efficiency of a silicon photovoltaic cell. 

The numerical model used in this study is built based on 

the extended mathematical expression in three-

dimensional for a P-N junction. The results from 

numerical modeling of Poisson and continuity equations 

(drift-diffusion model) show how the non-uniformity 

distribution of irradiation decreases the performance of a 

solar cell. 
 

Keywords: Solar Cells, P-N Junction, Semiconductor, 

Non-Uniform Irradiation, 3D Modeling, Drift-Diffusion. 
 

1. INTRODUCTION                                                                         

The current world energy situation and its evolution in 
the future are significant issues that concern the whole of 
humanity [1]. The excessive use of fossil fuels (coal, oil, 
gas), whose reserves are limited, leads to the generation of 
carbon dioxide [2]. According to the international climate 
agreement signed at the end of COP 21 in Paris (2016) [3], 
researchers are pressured to find ways to make electricity 
that does not pollute the environment. This is because of 
the need to cut carbon dioxide, which worsens the 
greenhouse effect, and the amount of electricity used 
worldwide proliferates. These are precisely why 
renewable energies are considered promising with 
considerable future potential [4]. One of the most widely 
used renewable energies in the world, non-polluting, is 

photovoltaic energy [5]. It is based on the direct 
conversion of solar energy into electrical energy and has 
great potential among the various renewable energies [6]. 
Several efforts are made worldwide to optimize and reduce 
the cost of solar cells. On the material part, many research 
teams have been working for many years to obtain high 
efficiencies with low production costs [7]. On the 
conversion system part, the research can be summarized, 
generally, in two main points [8, 9]:  
• The development of an accurate mathematical model that 
represents the actual photovoltaic cell and reflects the 
influence of different meteorological conditions on the 
parameters of the solar cell.  
• The development of an efficient optimization method 
capable of determining the maximum power point of the 
cell's characteristic I-V for any irradiation and temperature 
condition, regardless of the nature of the change in these 
conditions, fast or slow.  

The use of solar concentrators is one of the 
technologies that have shown an increase in the efficiency 
of solar cells. However, at the same time, they generate 
non-uniform irradiation on the surfaces of solar cells, 
resulting in a degradation of the electric power they 
produce. Although the use of solar concentrators can 
amplify the incident solar radiation on the photovoltaic 
cells several times, it always poses the problem of non-
uniformity. This non-uniformity can be produced on a 
single PV cell or a module composed of many PV cells. In 
the case of non-uniform irradiation, some areas of the PV 
cell are highly illuminated, while others are less 
illuminated. The excessively illuminated regions generate 
a considerable current and get heated up. As a result, the 
electrical output of the PV cell is reduced, and the cross-
current generated can cause damage to the cells. 
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In addition, there are other sources of irradiance non-

uniformity, such as shading caused by obstacles like 

clouds, chimneys, trees, and nearby buildings. Although 

many good works on PV cell modeling have been 

presented, it is still necessary to investigate cell efficiency 

in greater detail for some particular purposes [10, 11]. 

This article presents a numerical modeling of a single 

junction PV cell under non-uniform irradiation using the 

three-dimensional Finite Difference Method (FDM). We 

developed a 3D model in MATLAB that is based on an 

extended mathematical expression, that we have 

developed, for a P-N junction under various non-uniform 

irradiation profiles. This paper's outline is organized as 

follows: The proposed three-dimensional physical and 

mathematical models are described in section 2. Moreover, 

we present the boundary conditions at various interfaces of 

the investigated P-N junction. Then, we describe in section 

3 the numerical approach we used to solve the 

mathematical model obtained. Furthermore, we present in 

section 4 the Generation rate theory, which was applied to 

address the impact of non-uniform irradiation on the 

electrical parameters of solar cells. Section 5 presents the 

numerical results with analysis and discussion; finally, we 

summarize simulation results and draw some conclusions. 
 

2. BASIC EQUATIONS 

Our study used the drift-diffusion model. This model 

includes Poisson's equation, electron and hole continuity 

equations, and current relations. A set of nonlinear elliptic 

partial differentially coupled equations describes how 

electrons and holes behave in semiconductors. These 

equations may be generated from the Boltzmann transport 

equation or Maxwell's relations [12]. Both of these 

equation sets are available online. 
 

2.1. Poisson’s Equation 

The Equation 1 allows to describe the distribution of 

the electrostatic potential  at any point of the material.  It 

is deduced from Maxwell's first equation, and is therefore 

written in the form [13]: 
2 /   = −  (1) 

where, ε is the dielectric permittivity of the semiconductor. 

In general, this permittivity is a tensor quantity that 

depends on the crystallographic directions of the material. 

In our case, we consider it homogeneous. The electric 

charge density ρ is given by Equation (2), where aN −
 and 

dN +
 are the densities of ionized acceptor and donor 

dopants [14]. 

( )d aq p n N N + −= − + −  (2) 

We consider that all states introduced by doping are 

ionized at the operating temperatures of the solar cells (i.e., 

d dN N+   et a aN N−  , where aN  and dN  are the initial 

acceptor and donor dopant densities, respectively). This is 

because both the donor and acceptor states are placed at 

energy levels that are very near their respective conduction 

bands and valence bands. Whereas the acceptor states are 

filled with electrons and have a negative charge, the donor 

states are unoccupied and have a positive charge [15]. 

2.2. Continuity Equations 

The continuity equations of electrons  Equation (3) and 

holes Equation (4) are derived directly from Maxwell's 

fourth equation, and they govern the dynamic equilibrium 

of charge carriers in a semiconductor. These equations 

relate the temporal variation of charge carrier densities n 

and p to recombination and generation rates R and G, as 

well as current densities Jn and Jp [16]. 

1
. n

n
J G R

q t


 + − =


 (3) 

1
. p

p
J G R

q t


−  + − =


 (4) 

The term R corresponds to the total recombination rate 

and G represents the optical generation rate of electron-

hole pairs which will be discussed in detail in the Equation 

4. Jp and Jn are the hole and electron current densities, 

respectively. By limiting oneself to the permanent regime 

( / 0n t  =  and / 0p t  = ), and making the divergence 

operators explicit, Equations (3) and (4) [17] can thus be 

rewritten in the following: 

1
0n n nJ J J

G R
q x y z

   
+ + + − = 

   
 (5) 

1
0

p p pJ J J
G R

q x y z

   
− + + + − = 

   
 (6) 

 

2.3. Charge Transport Equations 

The current in a semiconductor is due to the 

displacement of charge carriers as a result of an electric 

field E = −  (drift current) or to a gradient of 

concentration (diffusion current). The current densities of 

the electrons and holes are thus given, respectively, by the 

Equations (7, 8) [17]. 

. . . . . nn n nJ q n E q D= +   (7) 

. . . . . pp p pJ q p E q D= −   (8) 

In these equations, n and p represents the electron 

and hole mobilities, respectively. Dn and Dp are their 

coefficients of diffusion presented by the Einstein relation, 

Equation (9) [18]. 

, ,n p n p

kT
D

q
=  (9) 

 

2.3. Domains and Boundary Conditions 

The boundary of the simulated structure is composed 

of two subdomains: the metal contacts on the one hand, in 

which the simple Dirichlet conditions are considered, and 

the rest of the boundary on the other hand, where 

homogeneous Neumann conditions are imposed [19]. 

A simple solar cell is composed, generally, of a P-N 

junction and two metal contacts, a first in front and a 

second in back. The conditions applied at these metal 

contacts are of Dirichlet type. In effect, the values of the 

potential  at each contact (forward or backward) are 

written as a function of the applied voltage Va and the 

potential barrier bi between the metal and the 

semiconductor as Equation (10).  
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On the other hand, the current densities are equal to the 

recombination currents at the surfaces, given by Equations 

(11, 12). In these relations, Sp and Sn represent the surface 

recombination velocities of the holes and electron 

respectively. neq, peq are the concentrations of the electrons 

and holes at thermal equilibrium [20].  

a biV = +  (10) 

( )n n eqJ S n n= −  (11) 

( )p p eqJ S p p= −  (12) 

At the lateral surfaces, we apply Neumann-type 

conditions, given by Equations (13)-(15), [21, 22]. These 

conditions can be explained by the fact that there is no flow 

of charge carriers to the outside environment via the lateral 

surfaces. 

. 0n ⊥ =  (13) 

. 0nJ n⊥ =  (14) 

. 0pJ n⊥ =  (15) 

where, n⊥  is a unit vector normal to the surfaces and 

oriented to the interior of the structure. 

The Equations (1), (5)-(8) form a system of nonlinear 

elliptic partial differential coupled equations. This system 

is defined in a three-dimensional space in steady state. 

Since the analytical solution is not possible, we resort to 

numerical methods. 

 

3. NUMERICAL APPROACH 

In the last part of this chapter, we discussed the 

mathematical model used to simulate a solar cell. In this 

part, we will discuss the method of numerical simulation 

that we have devised and put into practice for a P-N 

junction, the fundamental component of a solar cell, in 

both equilibrium and non-equilibrium thermodynamics. 

This process was developed by us and implemented by us. 

This software is a simulation in three dimensions of the 

flow of electrical charge across a P-N junction [23]. 

In fact, there are several methods and numerical 

techniques to solve our system of equations. The choice of 

the method used in this study is mainly based on the 

structure of the cell to be simulated; since we worked on a 

simple parallelepiped shape, we used the FDM to 

discretize the deferential equations [24]. In addition, it was 

necessary to develop an adaptive three-dimensional 

Schaftter-Gummel scheme to linearize the obtained model 

[25]. 

After discretization, we obtained a large system of 

equations that we solved with the Newton Raphson 

method using preconditioning so that the method used 

converges more rapidly. We use the initial hypothetical 

(X0=(analy+n,eq+p,eq)) as a starting point for the method 

of Newton-Raphson, to find the numerical solution of 

reduced system (Xeq=(eq+n,eq+p,eq)). 

Next, our computer software figures out the exact 

answer for each polarization by starting with this 

equilibrium solution and using a method based on half-

intervals to move forward. This process continues until the 

desired polarization condition is achieved.  

We use the same method for each polarization to 

introduce the half-interval lighting conditions until we 

reach the value set up front. This process continues until 

we reach the value. The process that must be carried out to 

disrupt the system is shown in Figure 1, a schematic. 

Although it may appear long, this process is very 

efficient such that it allows for a rapid convergence to find 

the values of the state variables at each operating point 

(characterized by a given bias and/or irradiation). The 

details of the development of the three-dimensional 

simulator of charge transport in semiconductors at 

equilibrium and out of equilibrium can be done by 

following the strategy given by the organizational charts in 

Figures 2 and 3. 

In addition to the adequate choice of the system 

excitation strategy to accelerate the calculation. The 

precision also depends on the discretization step, since the 

FDM is used, it will be larger as the step is smaller, while 

a larger step allows a faster calculation. In effect, the 

program allows different steps to be chosen depending on 

the region. To have a calculation as fast and as accurate as 

possible, the compromise is to choose a fairly large step, 

when the variables vary slowly with position, usually in 

the center of the layers far from the junction, and to choose 

a smaller step in the regions around this junction, where 

the variables vary rapidly. 

 

 
 

Figure 1. The technique followed to solve our system of equation under 

operating conditions (polarization and/or illumination) 

 

4. MODELING OF NON-UNIFORM 

ILLUMINATION 

The amount of light that hits the active surface of a 

solar cell has a clear and vital effect on how well that cell 

works. The efficiency of a PV solar cell also according to 

how that illumination is distributed across the cell's 

surface, which is mathematically represented by the 

corrective function fc (y; z).  Indeed, the creation of free 

carriers by the absorption of solar radiation is given by the 

optical generation rate G (cm-3 s-1), which is found in the 

continuity equations. This term depends on the flux  of 

the radiation penetrating the solar cell [26, 27].  
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Figure 2. Procedure for the simulation of a solar cell at thermodynamic 

equilibrium 

 

 
 

Figure 3. Organizational charts for solving the equation system at non-

equilibrium thermodynamics, introducing polarization and irradiation in 

series  

 

The optical generation rate G at an abscissa x inside the 

material is obtained by the relation 16: 

( ) ( ) ( ), , ;cG x y z x f y z =    (16) 

For any structure composed of multiple layers, as 

shown in the Figure 4, the expression of the flux in a layer 

j, between the abscissas xi and xi+ dj of absorption 

coefficient 
j
 , after crossing the previous layers of 

respective thicknesses d1, d2,…,dj-1, is given by the 

Equation (17). 
 

 
 

Figure 4. Source side voltage and current of phase (2) Absorption of 

white light by a solar cell composed of multiple layers 

 

( ) ( ) ( ) ( )

( ) ( )( )( )

1 1

/ 1

11

/ 1 1

1 1 exp

exp exp 2

j j
j i

f i i i

ii

j j
j j j

x R R

x R x x

  

 

   

 

− −

+

==

+ +

 
= − − −   

 

 − + − −


 (17) 

In the case of polychromatic radiation characterized by 

the incident flux ,i i  = , with ,i  is the value 

of the flux of photons per unit wavelength, in the spectral 

band [, +], the optical generation rate in layer j then 

becomes (Equation (17)): 

( ) ( ) ( ) ( )

( ) ( )( )( )

1 1

/ 1 ,

11

/ 1 1

, , 1 1 exp

exp exp 2

j j
j i

f i i i i

ii

j j j
j j j

G x y z R R

x R x x

  

  

    

  

− −

+

==

+ +

 
= − − −   

 

 − − − −

 
 (18) 

 

5. RESULTS AND DISCUSSION 

The numerical techniques described above allow us to 

calculate the values of the selected state variables at each 

point of the device, namely the electrostatic potential  (x, 

y, z), the electron and hole Fermi quasi-potentials p (x, y, 

z) and n (x, y, z), respectively. The program calculates all 

other quantities and their spatial variations from these 

three variables. It also calculates the electrical I-V 

characteristics for a given polarization and/or irradiation 

conditions. In this paper, we will present three studies: the 

effect of light intensity for non-uniform irradiation, the 

effect of the percentage of non-uniformity, and the effect 

of the distribution of non-uniformity. 
 

2.1. Effect of Light Intensity 

The non-uniform irradiation in this section has a 

rectangular-shaped distribution [28] and is applied to 25% 

of the total cell area. The rest of this area is illuminated by 

uniform irradiation. The Figures 5 and 6 represents the I-

V and Power-voltage characteristics of a solar cell 

illuminated in a uniform and non-uniform manner, 

respectively. We can see that there is no significative 

difference between the two curves. Therefore, we can 
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conclude that when the concentration ratio is low, non-

uniform irradiation has almost no effect on the I-V 

characteristic. This can be explained by the fact that at low 

concentrations of the flux of light, the effect of the parallel 

resistance, which results from non-uniform irradiation, is 

negligible [29]. 
 

 
 

Figure 5. Current-voltage I-V characteristics of a low-concentration 

(500 W/m2) solar cell under uniform and non-uniform irradiation 

 

 
 

Figure 6. Power-voltage P-V characteristics of a low-concentration  

(500 W/m2) solar cell under uniform and non-uniform irradiation 

 

Table 1 groups the values of the different solar cell 

parameters for uniform and non-uniform irradiations. We 

find that the open-circuit voltage Voc, the short-circuit 

current Isc, the maximum power Pmax, the fill factor FF, 

and the efficiency  did not change much for both types of 

irradiations. In effect, the voltage Voc is still the same in 

both cases because it does not depend on the distribution 

of the light flux but only on the saturation current and the 

photocurrent [30]. 
 

Table 1. Values of a PV solar cell with uniform and non-uniform irradiation 

with a concentration of 500 W/m², Values of a solar cell under uniform and 

non-uniform irradiation with a concentration of 500 W/m² 
 

 (%) FF Voc (V)  Isc (A) Irradiation 

18.427 0.840 0.610 4.375 Uniform 

18.427 0.852 0.610 4.312 Non- uniform 

 

 

Given that the temperature of the photovoltaic cell is 

maintained as constant, and knowing that the cell receives 

the same amount of energy in both cases (uniform and non-

uniform irradiations), the currents Isc generated by the 

photovoltaic cell are the same. Moreover, due to the low 

concentration of the light flux and the choice of the ohmic 

contact, the effect of the internal series resistance on these 

variables is negligible. The same can be noticed for the fill 

factor FF and the conversion efficiency , which is 

defined as the maximum power ratio by the power input. 

 

 
 

Figure 7. Solar cell current-voltage I-V characteristics under standard 

intensity (1000 W/m2) uniform and non-uniform irradiation 

 

 
 

Figure 8. Power-voltage P-V characteristics of a PV solar cell with 

uniform and non-uniform irradiation of standard intensity (1000 W/m2) 

 

In contrast to the low irradiation case (500 W/m2), the 

standard flux (1000 W/m2) shows more effect on the I-V 

and P-V characteristics as shown in Figures 7 and 8, 

respectively. 

As shown in Figures 9 and 10, the effect of irradiation 

non uniformity becomes more significant at high 

intensities (1500 W/m2). This effect appears for all 

electrical parameters of the cell, except that for the open-

circuit voltage which is not much influenced. 
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Figure 9. Solar cell (I-V) parameters under uniform and non-uniform 

high-intensity (1500 W/m2) irradiation 

 

 
 

Figure 10. A solar cell's power-voltage P-V characteristics under high-

intensity (1500 W/m2) uniform and non-uniform irradiation 

 

2.1. Effect of Percentage of Non-Uniformity 

In this analysis, we investigate a light flux that is not 

uniform across three brightness levels and alters the degree 

of its irregularity across these levels. Figure 11 shows how 

the efficiency of solar cells drops proportionally at this 

level of degradation. We see a general trend of decreasing 

efficiency when the light flow increases. As a result, even 

for small percentages of non-uniformity, the efficiency 

loss is almost linear for high-intensity flux. However, for 

significant percentages of non-uniformity, the degradation 

is highly considered for low and standard-intensity fluxes. 

 

2.1. Effect of the Non-Uniformity Distribution 

Here, we show the results of a simulation run on a solar 

cell subjected to non-uniform irradiation of both the 

rectangular and Gaussian varieties. The electrical 

properties of the model cell subjected to these various 

radiation levels are shown in Figure 12. We see that the 

solar cell's performance is more affected by a Gaussian 

distribution of no uniformity than by a rectangular 

distribution. 

 

 

 
 

Figure 11. Solar cell efficiency varies non-uniformly with surface 

irradiation 

 

 
 

Figure 12. I-V characteristic of a solar cell submitted to a standard non-

uniform irradiation, with rectangular and Gaussian distributions 

 

6. CONCLUSIONS 

Modeling and simulating a P-N junction, a crucial 

component of PV solar cells, under uniform and non-

uniform irradiation was the goal of this work. We 

employed the finite difference approach to discretize and 

linearize the differential equations supplied by the drift-

diffusion model. In addition, we extended the Scharfetter-

Gummel scheme to three dimensions. We demonstrated 

the simulation results comparing the performance of a 

solar cell subject to uniform irradiation with solar cells 

subjected to low, medium, and high light flux intensities. 

A solar cell's I-V characteristic is unaffected by low-

intensity non-uniform irradiation. This is because the 

flowing current through the PV solar cell is not affected by 

the parallel and series resistances caused by the non-

uniform irradiation. Additionally, in the case of 

rectangular distribution, the impact of non-uniform 

irradiation on a solar cell's performance is reduced. At a 

light flow of medium or high intensity, however, the 

impact of non-uniform irradiation on solar cell 

characteristics becomes noticeable. 
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NOMENCLATURES 

 

Acronyms  

PV Photovoltaic 

P-N              P-type and N-type semiconductors. 

COP           Conference of Parties 

DD             Drift-Diffusion 
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