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Abstract- The current paper presents an extensive study 
on the development and comparison of different machine-
learning approaches to achieve accurate wind speed 
prediction, which is crucial for renewable energy 
generation. Machine-learning methods are more effective 
than traditional statistical and physical methods when 
working with large datasets. Six different machine 
learning algorithms, including Recurrent Neural Network 
(RNN), Convolutional Neural Network (CNN), Support 
Vector Machine (SVM), and the Extreme Learning 
Machine (ELM), were evaluated in this study using wind 
speed data from each quarter of the year and the entire 
year. The algorithms' performance is assessed using 
different error metrics and computational time. The study 
found that all the algorithms performed well with both big 
and small datasets, with the LSTM model showing the best 
performance in terms of evaluation metrics (MAPE = 
0.068). The study also highlights that the ELM algorithm 
is more efficient in terms of computational time (2.77 s), 
and had the ability to learn quickly from a training dataset. 
Additionally, the article explores the impact of the ratio of 
data splitting on prediction performance, and emphasizes 
the importance of selecting an appropriate split percentage 
that balances project objectives, computational costs, and 
representativeness of the training and test datasets. 
 

Keywords: Wind Speed Prediction, Time Series, Machine 
Learning, Forecasting Models, Errors Metrics, 
Computational Time, Data Splitting. 
 

1. INTRODUCTION 
As reported in the British Petroleum (BP) Statistical 

Review of World Energy 2021, renewable energy sources 
contribute to 11.7% of the global power generation, 
suggesting that the remaining 88% is generated from non-
renewable sources [1]. This implies that about 88% of the 
world's power generation is provided by non-renewable 
energies such as oil, coal, gas or nuclear. In other words, 
the overwhelming majority of the world's energy 
consumption is supplied by unsustainable, polluting and 
exhaustible energies sources. However, the advantages of 
renewable energies are numerous; they are inexhaustible 
on the human time scale, environmentally friendly and 
safe.  

Renewable energies sources emit very little greenhouse 
gases and unlike fossil fuels or nuclear energy, they do not 
use exhaustible materials like oil or uranium. Wind energy 
is widely acknowledged as a well-established and cost-
effective renewable technology, second only to 
hydroelectricity. Due to its scalability, the utilization of 
wind energy is essential for the advancement of modern 
electricity generation strategies, capable of meeting both 
large-scale industrial and small-scale domestic needs. 
According to the BP Statistical Review of World Energy 
2021, wind power is the largest contributor to renewable 
electricity generation, accounting for 173 TWh, followed 
by solar power at 148 TWh. However, wind energy faces 
challenges such as intermittency and susceptibility to 
variations in wind speed and direction, which limit its 
potential. 

Indeed, the efficiency of a wind turbine installation 
depends strongly on the available wind potential at a given 
site, which depends on the cube of wind speed.  Therefore, 
forecasting and assessing the wind potential is crucial for 
grid management and control, including determining the 
amount of energy produced, protecting the system from 
high speeds, and assessing the feasibility of building wind 
power plants at specific sites based on their potential.  

In this sense, this paper attempts to develop and 
contrast various machine-learning approaches for 
predicting time series of wind speed data. To achieve this 
purpose, we implemented six ML prediction algorithms, 
covering the four main areas of ML, including Feed 
Forward Network (FFN), Recurrent Neural Network 
(RNN), Convolutional Neural Network (CNN), and 
Support Vector Machine (SVM). The impact of seasons 
and the database size on the relevance of these models was 
evaluated by testing them on each quarter of the year and 
the entire year's data. The main sections of this paper are 
organized as follows: The first section provides a literature 
review of ML approaches used for wind speed forecasting.  

The second section outlines the methodology and 
describes the six machine learning algorithms used in this 
research. Dataset exploration and processing are discussed 
in the third section. The fourth section describes an hourly 
one-step-ahead wind speed forecasting based on six ML 
methods: Extreme learning machines (ELM), 
Convolutional Neural Network (CNN), Long Short-Term 
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Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated 
recurrent units (GRU), and Support Vector Regression 
(SVR). Finally, in the last section, results are thoroughly 
analyzed and discussed. The performances of six 
algorithms were compared based on different errors 
metrics and on computational time required for each model. 

 
2. RELATED WORK 

Accurate wind speed prediction is a critical aspect of 
optimizing the design and operation of wind energy 
systems, which plays a crucial role in maintaining the 
stability and reliability of the grid, as well as efficient 
power distribution. This can enable grid operators to 
efficiently manage electricity supply and provide a 
consistent and reliable flow of electricity to consumers, 
ultimately leading to increased adoption of renewable 
energy and reduced reliance on fossil fuels. 

According to the literature, three principal 
methodologies for predicting wind speed have been 
recognized, which comprise physical, statistical, and 
machine learning (ML) techniques. Physical models 
explore the factors that influence wind speed, such as 
temperature, pressure, and altitude, using physical 
concepts to model the variation in wind speed. 
Nonetheless, physical models exhibit lower precision in 
the presence of highly irregular wind speeds, rendering 
them more appropriate for long-range predictions or as 
input for statistical models. Statistical and AI-based 
approaches, on the other hand, predict wind energy as a 
stochastic process. Statistical models are based on 
probability theory and mathematical statistics, employing 
historical data sets to determine the correlation between 
the input parameters and the wind variable outcome. 
Models such as Autoregressive Integrated Moving 
Average (ARIMA), Bayesian models, and Kalman filter-
based models are frequently used. In comparison, machine 
learning algorithms have been shown to perform better 
when dealing with large amounts of data [2]. These 
approaches train the model and forecast using time-series 
wind speed data. The Artificial Neural Network (ANN) is 
the most extensively used branch of machine learning, 
with the ANN model having self-adaptation and learning 
capabilities. 

Thus, the prediction of wind speed through the 
utilization of machine-learning models has become a 
prevalent subject of research. Artificial intelligence 
techniques generally have the ability to handle nonlinear 
functions and exhibit strong self-learning capabilities [3]. 
Xiao and colleagues [4] studied the use of a self-adaptive 
kernel extreme learning machine (KELM) to improve the 
accuracy of wind speed predictions while reducing 
training costs. They also considered a selection of input 
parameters to improve the efficiency of the KELM model. 
Navas, et al. [5] developed a multi-layer perception neural 
network (MLPNN) to forecast wind speed at an altitude of 
65 meters using wind speed data as input. According to [6] 
support vector machines (SVM) for regression 
outperformed multilayer perceptron neural networks 
(MLPNN) in predicting wind speed. Santamaria-Bonfil G, 
et al. [7] conducted an empirical test to forecast wind speed 
and power using support vector regression (SVR), and 

compared its performance to that of the persistence model 
and time series models such as AR, ARMA, and ARIMA, 
they found that SVR demonstrated improved performance 
compared to these models.  

Recurrent neural networks (RNNs) are one of the most 
effective models for handling sequential data, specifically 
time series data. Nevertheless, traditional (RNNs) models 
have their own limitations. They are unable to adequately 
capture long-term dependencies in the sequence of input 
data and cannot address the issue of long-term 
dependencies. However, its variant deep learning model, 
Long Short-Term Memory (LSTM) is very skilled at 
handling the time series problem. This model was widely 
employed to predict wind speed; the outcomes were 
compared to autoregressive integrated moving average and 
traditional artificial neural network models, according to 
the comparison, the LSTM approach is more accurate [8]. 
Convolutional neural network (CNN), convolutional long 
short-term memory network (CLSTMN) and Wavelet 
decomposition (WD) technique were used in [9] to remove 
the effects of noise from the original data and increase the 
accuracy of wind-speed forecasts. Gated Recurrent Unit 
(GRU) is a different application of RNN, it is simpler to 
compute and implement that the LSTM. According to the 
results obtained in [10], the proposed approach using the 
GRU algorithm demonstrated high skill and narrower 
prediction interval. Recently, several studies have been 
conducted using hybrid AI models to predict wind speed.  

In [11] SVM combined the predictions of multiple 
LSTMs to generate Wind Speed forecasts. In [12], wind 
speed predictions were made using a combination of 
specific weights with four distinct types of ANNs: Back 
propagation neural network (BPNN), Elman network, 
Wavelet neural network (WNN), and Generalized 
regression neural network (GRN). Previous studies have 
shown that AI-based models outperformed traditional 
statistical models in wind speed and power forecasting. 
 
3. DATASET EXPLORATION AND PROCESSING 

 
3.1. Data Collection and Work Process 

The machine-learning algorithms were subjected to 
training, testing, and validation processes using the wind 
data profile collected from the Prediction of Worldwide 
Energy Resources (POWER) Data Access Viewer v2.0.0, 
in the period from 1 January 2020 to 31 December 2020, 
at “Abdel Halak Torres” in “Al Koudia Al Baida – 
Tetouen” (Latitude: 35° 45' 35.1, Longitude: -5° 41' 19.9'). 
The collected wind speed measurements were recorded 
continuously at a height of 50 m. There are 8784 
observations of average wind speed, each taken over a 60-
minute period. The data visualization is illustrated in 
figure 1, and Table 1 shows the basic information of wind 
speed time series for each quarter in 2020. Based on the 
obtained values, it can be observed that the second and last 
quarters exhibit stronger wind and a higher degree of 
variability in wind speed around the average. To start with, 
the database is divided into four time periods 
corresponding to the seasons of the year. Each season 
dataset is then farther split into two parts: the training part 
(70%) and testing part (30%).  
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Figure 1. Wind data visualization 
 

Table 1. Basic information of wind speed data (m/s) 
 

 Max Min Average Variance 
Quarter 1 - Winter 9.690 0.080 3.185 2.310 
Quarter 2- Spring 10.940 0.060 3.444 2.956 

Quarter 3- Summer 10.360 0.090 3.013 1.803 
Quarter 4- Fall 11.890 0.150 3.550 2.975 

 

 
 

Figure 2. Overall Diagram of the proposed machine learning models 
 
It is important to note that both the testing set and the 

training set use the same rolling prediction approach. Next, 
the machine learning models are trained to build the 
appropriate model. The obtained model was validated 
using the testing set, and was retrained until achieving a 
suitable accuracy, while also recording the final 
computational time. Multiple statistical error metrics, 
including mean square error (MSE), root mean square error 
(RMSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE), were employed to evaluate the 
prediction models. The same algorithms were applied to 
the entire database, i.e. the whole year, to assess the impact 
of the increased database size on the performance of the 
proposed prediction models. The main steps of the process 
used to perform predictive machine learning algorithms 
are depicted in Figure 2. Furthermore, several 
combinations of training and test data were applied to 
assess the effect of data portioning on prediction 
performance. 

 
3.2. The Machine-Learning Algorithms 

Arthur Samuel introduced the term ML in 1959, 
defining it as the research field that allows computers to 
learn without explicit programming. ML is a branch of AI 
that uses statistical probabilities methods that enable 
machines to learn or to accomplish tasks more efficiently 
based on previous information or data. The major 
objective of machine learning (ML) is to predict the value 
of an expected output given an input, using only 
characteristics supplied by the model programmer or 
learned from training data. Machine learning can be 
categorized into three broad categories: (i) supervised 
learning: The goal is to train the machine to identify the 
fundamental relationship between inputs and outputs, thus 
which supervised machine learning can be applied to 
forecast future data. The algorithm aims to generate a 
function that can effectively anticipate the output from the 
input variables with precision. There are two types of 
supervised machine learning, classification and regression. 
(ii) Unsupervised learning: The algorithm itself determines 
the structure of the input. Two categories of supervised 
machine learning exist, clustering and association. (iii) 
Reinforcement learning: In reinforcement-based machine 
learning, a computer program engages with an active 
environment to achieve a certain goal.  

 

 
 

Figure 3. A schematic overview of the main branches of machine 
learning (ML) 

 
As the learner-program moves through the problem 
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learning is frequently applied in interactive or dynamic 
environments, such as gaming. Figure 3 shows a schematic 
overview of the main branches of machine learning (ML) 
methods including machine-learning model developed in 
this research, namely; the ELM, CNN, LSTM, BiLSTM, 
GRU, and SVR. 

 
3.3. Evaluation Indices for Forecasting Performance 

We used three statistical errors metrics to validate the 
developed algorithms and compare their forecasting 
accuracy, namely: RMSE (root mean square error) MAE 
(mean absolute error), and MAPE (mean absolute percent 
error), the calculation of these metrics is performed using 
the following formulae: 

2
ˆ( , )

1

1
ˆ( )

n

y y j j
j

RMSE y yn =
= −∑  (1) 

ˆ( , )
1

1 ˆ| |
n

y y j j
j

MAE y y
n =

= −∑  (2) 

ˆ( , )
1

ˆ1 | |
n

j j
y y

jj

y y
MAPE

n y=

−
= ∑  (3) 

where, y and ŷ are respectively the real and the forecast 
values and n is the samples number of the y(t) series. 

 
4. FORECASTING ALGORITHMS 

DEVELOPMENT 
 
4.1. Extreme Learning Machine 

Extreme learning machine (ELM) is a feedforward 
neural network (FNN) using a single hidden layer. The 
nodes can be never renewed; they may be inherited from 
their ancestors without being altered, so it is not required 
to adjust the parameters of hidden nodes. The (ELM) 
algorithm exhibits high generalization performance with 
an extremely fast learning speed, faster than networks 
trained using backpropagation. Figure 4 illustrates the 
diagram representation of ELM model [13].  

 

 
 

Figure 4. The diagram representation of ELM model [13] 
 

The indices N, L and m correspond respectively to the 
number of nodes in the input, hidden, and output layer, the 
activation function's output is represented as follows: 

1
. ( . ) 1, ,,i i j i

i
j

L
g w x b o j Nβ

=
+ = = …∑  (4) 

where, iw  and iβ  denotes the weight vectors, and ib  
represents the bias function. The goal is to minimize the 
error: 

1
0

L

j j
j

o t
=

− =∑   (5) 

To build the ELM model, we develop the following 
algorithm: 
• Assign randomly the parameters (w, b) of the hidden 
layer from a Gaussian distribution with a range of -1 to 1.  
• Compute the output matrix of the hidden layer by 
applying the Rectified Linear Unit (ReLU) as the 
activation function. 
• Calculate the output weights β, following the equation  

H Tβ +=  (6) 

The matrix H + refers to the Moore-Penrose inverse of 
the hidden layer matrix H. The purpose is to reduce the 
least square error between training and predicted variables  
• The model is ready for forecasting, we use the test data 
to make the predictions.  
• Using the performance metrics to assess the accuracy of 
predictions. 
 
4.2. Convolutional Neural Network 

In the literature, CNNs have primarily been used for 
image classification [14]. Using CNNs to predict the 
following value in a sequence issues, such as time-series 
forecasting problems, has recently attracted increasing 
interest from the research community [15]. CNNs employ 
a convolution, a specific linear operation. CNNs aim to 
learn the relation between inputs data and the output, and 
then save that learning in the weights of filters. Our wind 
speed dataset is a univariate time series, so we use a one-
dimensional convolutional layer. The figure 5 shows a 
simplified diagram of a 1D CNN [15].  

 

 
 

Figure 5. The diagram of 1D CNN [15] 
 

The following is a description of our process for 
creating the 1D CNN model for one-step wind speed 
forecasting: 
 Convert the one-dimensional time series into sub 
sequences by extracting features and outputs. 
 Transform the inputs data in a 3D matrix format to be 
adapted to CNN models. 
 Build the CNN model architecture: Firstly, we 
implement a 1D convolutional layer using a filter, the input 
data is convolved. Variables in the filter are analogous to 
neural network weights. The layer calculates the total of n 
weighted inputs time steps, app ends a bias, and after 
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applies the ReLU activation function, the corresponding 
equation is expressed as follows:  

0 0 0 1 1ReLU( ... )i iy w x w x w x b= + + + +  (7) 
where, y0 is the first output of the 1D convolutional layer, 
xi are the inputs, b is the bias, and wi are weights. The 
identical process is applied for the subsequent time step: 

1 0 1 1 2 1ReLU( ... )i iy w x w x w x b+= + + + +  (8) 
 While maintaining the significant properties that the 
convolutional layer determined, the pooling layer control 
the overfitting of the parameters. Finally, fully connected 
layers forward the features obtained to output layer using 
one neuron. 
 To tune the model, we use the (Adaptive Moment 
Estimator) algorithm to optimize the gradient descent 
problem and the mean squared error as loss function.  
 In the last step, we train the model and test it on the test 
data. 
 
4.3. Long Short-Term Memory 

The LSTM network is a type of recurrent neural 
network (RNN). The main objective of LSTM is to resolve 
the gradient vanishing problem. Therefore, in LSTM, self-
connected gates are incorporated in the hidden unit. The 
LSTM cell comprises three gates, namely the input gate xt, 
forget gate ft, and output gate ot, which control the flow of 
information. There are also two types of outputs: Cell state 
ct and hidden state ht. Figure 6 shows the LSTM cell 
structure. The inputs of each gate have different weights wi 
and biases bi. The Forget Gate is capable of discarding 
information or reducing its weight, which was relevant at 
time t-1 but no longer holds true at time t.  

The Input Gate allows the cell to store novel 
information at time t, which may have been absent or less 
significant (with a low weight) at time t-1. The output gate 
regulates the information to be transmitted to the next time 
step (t+1) based on both the memory ct and the activation 
function. The memory vector ct enables the LSTM cell to 
store values over arbitrary time intervals, while the three 
gates control the flow of information that enters and exits 
the cell. The LSTM calculation equations are [16]: 

[ ]1( , )t i t t ii w h x bσ −= +  (9) 

[ ]1( , )t f t t ff w h x bσ −= +  (10) 

[ ]1tanh( , )t g t t gg w h x b−= +  (11) 

[ ]0 1 0( , )t t to w h x bσ −= +  (12) 

1t t t t tc c f g i−= +  (13) 
tanh( )t t th c o= ×  (14) 

where, σ  is the sigmoid function, , , ,i f g ow are the weights, 

, , ,i f g ob  are the biases and ct is the memory cell.  
The proposed LSTM model for wind speed prediction 

is based on numerous parts, namely  
 Splitting dataset on training data 70% and test data 30%. 
 Normalizing the dataset by rescaling the values to the 
range (0-1) using the MinMaxScaler class of scikit-learn 
library. 
 Defining the three arguments of the LSTM model: 
Samples (values), time steps and the features, the batch 

size is one, one sample is processed at a time, so the time-
step is one-step ahead, and we have one-dimensional 
output since our time series is 1-D. 
 Designing and fitting the model, we use 1 neuron fit for 
10 epochs to make the compilation time moderate, we 
apply the sigmoid activation function. The ADAM 
algorithm and the mean squared error loss function are 
used to fit optimize the model. 
 Using the test data to assess the performance of the 
model. And validate the model after numerous iterations 
using many measures of errors metric 
 

 
Figure 6. The LSTM cell structure 

 
4.4. Bidirectional LSTM  

The Bi-directional LSTM, or BiLSTM are an extension 
of LSTM models, the signal propagates both forward and 
backward in time. Firstly, the BiLSTM model supplies 
input data to a feedback layer; secondly, the input data 
sequence is reversed and supplied to the backward layer of 
the LSTM model. Overall, using the LSTM twice mains to 
improve learning long-term dependencies. Figure 7 
presents the bidirectional LSTM architecture [17]. 

 

 
 

Figure 7. The BiLSTM cell structure [17] 
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To build the BiLSTM model, we followed the same 
steps previously described in LSTM, but rather than 
training just one model, we introduce a pair of models. The 
initial model learns the input sequence, while the second 
model is trained on the inverse sequence of the input. Each 
bidirectional layer wraps a subsequent layer. 
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4.5. Gated Recurrent Unit  
GRU is an enhanced version of RNN-based approaches 

with a structure resembling to LSTM methods, which aims 
to reduce the computational cost of the network. It was 
created by Cho, et al. [18]. The main distinctions between 
the architectures are: The GRU cell has no output gate; 
consequently, it has less parameters, the network's 
working memory and long-term memory are both stored 
in the hidden state. The single GRU cell is shown in Figure 
8, tx and ts , represent the actual input and output at phase 
t, while tr  and tz represent respectively the reset and 
update gates. tz is a crucial feature, it calculates how much 
previous time steps are required to shift to next state. The 
reset gate tr  decides how much prior data should be 
ignored. The t̂s  is the candidate hidden state. The sigmoid 
activation function is used to merge the values of the 
parameters.  

 

 
 

Figure 8. The GRU cell structure  
 

The equations of the GRU cell’s nodes are:   
[ ]1( , )t z t tz w s xσ −=  (18) 

[ ]1( , )t r t tr w s xσ −=  (19) 

[ ]1ˆ tanh( , )t t t ts w r s x−=  (20) 

1 ˆ(1 )t t t t ts z s z s−= − +  (21) 
where, σ is the sigmoid function, ,z rw are the weights. 

To implement the GRU model, we followed exactly, 
the same steps as the LSTM model, we compile the 
algorithm with the same parameters and train it for the 
same number of epochs. The main distinction between the 
two models, is the number of the gates. GRU utilize less 
training parameters, as it has two gates (reset and update) 
whereas LSTM has three gates (input, output and forget).  
 
4.6. Support Vector Regression 

Support vector machines (SVMs) are supervised 
machine learning models developed to address 
mathematical discrimination and regression problems. In 
1996, Vladimir Vapnik, et al. [19] proposed a method to 
use SVMs to solve regression problems, using the kernel 
technique, which is widely used in machine learning to 
solve a non-linear problem. The regression version of 
SVM is named Support Vector Regression (SVR). 
Maximum-margin classifiers or Support Vector Machines 
(SVMs) aim to maximize the distance between the nearest 
vectors of each class and the line. If the SVM attempts to 
split the dataset into two zones (classification), the SVR 
attempts to do the inverse while optimizing the epsilon 
distance. Figure 9 shows the basic principle of SVR. 

 
 

Figure 9. The basic principle of SVR 
 
The first steps in implementing the SVR model are the 

same as in previous RNN algorithms, namely; separate the 
dataset into a train set and a test set, reshape the data to 
build a time-step based dataset. The aim of the regression 
is to fit a line (hyperplane) in feature space, in the form of 
a regression function that approximates the maximum 
number of data points with the lowest possible error. The 
function is described as: 

( ) ( )Tf x w x bρ= +  (22) 
where, w is the weight vector, ϕ(x) is the mapping 
function, and b is the bias constant. The coefficients w and 
𝑏𝑏 are estimated by minimizing the risk function. 

To build the SVR model, we use the kernel function 
Gaussian radial basis function (RBF), RBF is counted 
among of the most used kernels due of its resemblance to 
the Gaussian distribution. For two points xi and xj, the RBF 
kernel function calculates their similarity, The following is 
a mathematical representation of this kernel: 

2

2( ) exp( )
2
i j

i j
x x

K x x
σ

−
− = −  (23) 

where, σ is the hyperparameter of the SVR model. 
To implement the RBF Kernel SVR in the scikit-learn 

library of python, we set two hyperparameters γ for the 
RBF Kernel and c for the SVR. γ is inversely proportional 
to σ. The value of σ is determined by using the 
hyperparameters tuning technique Grid Search Cross 
Validation. The constant c defines the amount of error 
allowed in the model, adjusting the limit between model 
complexity and error. Therefore, we fix the parameters: 
kernel='RBF' gamma = 0.5 and C=10. 

 
5. RESULTS AND DISCUSSION 

 
5.1. Prediction Accuracy per Season 

Table 2 indicates the errors metrics achieved by each 
approach for predicting the wind speed data: ELM, CNN, 
LSTM, BiLSTM, GRU & SVR for each quarter of the year. 
 

Table 2. Errors metrics values 
 

  ELM CNN LSTM BiLSTM GRU SVR 

Q1 
RMSE 0.322 0.368 0.299 0.304 0.309 0.338 
MAE 0.226 0.265 0.207 0.208 0.217 0.230 

MAPE 0.094 0.125 0.087 0.086 0.091 0.111 

Q2 
RMSE 0.304 0.356 0.292 0.296 0.298 0.335 
MAE 0.220 0.278 0.222 0.244 0.242 0.250 

MAPE 0.091 0.109 0.088 0.092 0.093 0.101 

Q3 
RMSE 0.255 0.325 0.253 0.249 0.244 0.306 
MAE 0.176 0.198 0.177 0.176 0.181 0.190 

MAPE 0.076 0.098 0.068 0.069 0.072 0.091 

Q4 
RMSE 0.313 0.366 0.312 0.313 0.325 0.329 
MAE 0.230 0.301 0.218 0.216 0.221 0.244 

MAPE 0.111 0.136 0.105 0.104 0.109 0.130 
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The results presented in Table 2, indicate the promise 
forecast quality of the six-trained models in terms of the 
comparison analysis. As shown in Figure 10, the MAPE 
values of the proposed models are considerably lower 
during summer (the third quarter) than those in other 
seasons, with slightly lower forecasting performance in 
fall. These findings suggest that weather conditions 
significantly influence the outcome of prediction 
performance, as fall weather is generally more unstable 
and unpredictable [20]. Moreover, the average RMSE 
values confirm that RNN-based models, specifically 
LSTM, BiLSTM, and GRU (with values of 0.289, 0.291, 
and 0.294, respectively), exhibit better forecasting 
performance than traditional feed-forward models [21]. 
This can largely be attributed to RNN's ability to generate 
outputs using historical data, making it more appropriate 
for modeling sequential data compared to traditional feed-
forward models that use only current data [22]. Based on 
errors measurements, LSTM achieves the lowest 
minimum MAPE among all models (0.068), slightly 
outperforming GRU and BiLSTM models. However, 
GRUs are less complex and thus easier to adjust.  

In addition, the Extreme Learning Machine (ELM) 
model has shown robustness and great predictions 
regarding with error values very close to those of RNN 
approaches, outperforming SVR in terms of accuracy. It is 
worth noting that the predicted values of SVR are 
moderately stable for all seasons, with more accurate 
prediction when fluctuations are not significant. However, 
the SVR approach's limitation lies in the absence of a 
robust approach to learning long-term temporal 
dependencies [23]. Lastly, as is evident from Table 2 that 
the CNN models showed the worst performance with the 
highest RMSE values in each term.  
 

 
 

Figure 10. MAPE values 
 

While, Convolutional neural networks (CNNs) are 
designed to handle data with grid structure, such as 
images, most of the research on CNNs focuses on object 
recognition and detection, with little discussion on 
prediction identification [24]. 

 
5.2. Prediction Accuracy per the Whole Year 

In this case, a data set of 8784 samples for the entire 
year was used, dividing the samples into 70% training and 
30% test data. The prediction visualization graphs in 
Figures 11a, 11b, 11c, 11d, 11e and 11f demonstrate that 
all six proposed models accurately predicted the wind 
speed data. This suggests that these models produce 
reliable prediction results. Table 3 displays the RMSE and 
MAPE values for each method used in forecasting wind 
speed data for the whole year. 

The RNN models once again achieved the highest 
accuracy score based on the evaluation metrics. The major 
challenge of deep learning models is the availability access 
to sufficient data to create a good model [21]. According 
to the results of this study, deep learning models provide 
satisfactory results with both relatively large and small 
data sizes. Although the statistical approach SVR 
performed better for smaller data sets, with an average 
RMSE of 0.327 for a quarter compared to an RMSE of 
0.333 for the year, the ELM model still performed well, 
and the size of the database had negligible influence on the 
forecast accuracy. ELM has once again demonstrated its 
stability and robustness. However, even with slight 
improvements in performance, the CNN model was less 
effective compared to the other models. In summary, this 
study's findings suggest that RNN models are the most 
accurate in forecasting wind speed data. Even with small 
data sizes, deep learning models can still yield satisfactory 
results. The ELM model was also found to be stable and 
robust, while the CNN model was the least effective 
among the six proposed models. 

 
Table 3. Errors metrics for results prediction per the year 

 
 ELM CNN LSTM biLSTM GRU SVR 

RMSE 0.310 0.349 0.302 0.310 0.300 0.333 
MAPE 0.090 0.112 0.071 0.075 0.090 0.093 
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Figure 11. a) Predicted vs forecasted values, b) Predicted vs forecasted 
values, c) Predicted vs forecasted values, d) Predicted vs forecasted 
values, e) Predicted vs forecasted values, f) Predicted vs forecasted 

values 
 

5.3. Computational Time Comparison 
When implementing machine learning models, 

prediction accuracy is a crucial consideration. However, 
with a large amount of data, it is essential to consider the 
computational time required [25]. The computing time for 
the six models is presented in figure 12. The results show 
that the LSTM and BiLSTM models required significantly 
more computational time (58.2 s and 84 s) than the other 
machine learning models. This is expected the more 
complex structure which includes three weight matrices 
(Forget gate, Input gate and output gate), and requires 
more time to learn than other machine learning 
approaches. However, the GRU model, which only has 
two gates and uses fewer training parameter, has a faster 
training time than LSTM model [26]. In terms of execution 
time, the ELM and SVR models are the fastest. The ELM 
network determines its output weights by solving linear 
equations, requiring only one calculation to achieve the 
optimal solution. Both SVR and ELM do not require the 
iterative back propagation algorithm procedure which also 
contributes to their fast execution times. 

Overall, this study found that the LSTM and BiLSTM 
models required more computational time than the other 

models due to their complex structure. Meanwhile, the 
ELM and SVR models were the fastest in terms of 
execution time. These findings highlight the importance of 
considering both prediction accuracy and computational 
time when selecting a machine learning model for a 
particular task. 

 

 
 

Figure 12. Computational time 
 

5.4. Impact of Data Partitioning on Accuracy of Wind 
Speed Forecasting: Case Study ELM and LSTM  

Data partitioning is crucial in enhancing the 
performance of machine learning models, a good 
generalization of the model relies on the size of the training 
dataset [27]. To evaluate the impact of data partitioning on 
prediction performance, several combinations of training 
and test data were applied to LSTM and ELM algorithms. 
Firstly, wind speed data was split into various ratios with 
a 5% step interval. (60%-40%, 65%-35%,70%-30%, 75%-
25%, 80%-20%, 85%-15% and 90%-10%). Next, using 
these splitting data, different sub-datasets were generated. 
The model’s accuracy was evaluated based on RMSE 
values, which compare the actual and the predicted values 
of the testing data.  

This experiment aims to investigate how the 
performance of the LSTM and ELM algorithms is affected 
by the partitioning of data. By applying different data 
ratios, this study provides insights into the optimal training 
dataset size required to achieve good generalization of the 
model. These results have important effects for the 
development of machine learning models in real-world 
applications, where limited data may be available and 
accurate predictions are critical. 

As shown in Figure 13, it is clearly observed that ML 
models are significantly influenced by the ratio used to 
split the datasets for training and validation. These results 
indicate that the selection of the amount of wind speed data 
for generating datasets has a considerable impact on the 
forecasting results. Overall, it can be confirmed that the 
ELM model is the most stable model under different 
splitting ratios The results confirmed that the 
training/testing ratio of 70-30%, was the most appropriate 
for training and validating the LSTM and ELM models, 
which is consistent with previous research [28], [29]. It is 
important to note that as the size of training data increase, 
the model becomes more accurate. It has been noticed that 
if the data training size is too large (up to 80%), a complex 
model can store it without comprehending the underlying 
relationships among the variables. This can lead to 
overlearning or overfitting, where the model works very 
well on the training data but has difficulty generalizing to 
new data [30]. Nevertheless, it should be noted that as the 
size of the training data increases, the amount of time and 
heap space required for each run also increases. 
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Figure 13. RMSE values under different splitting ratios 
 

6. CONCLUSION 
In conclusion, the objective of this study was to create 

and contrast different machine learning approaches for 
predicting time series of wind speed data. Six models, 
including SVM, CNN, RNN, LSTM, biLSTM, and ELM, 
were implemented and evaluated. These models were 
tested on each quarter of the year and on the whole year 
data to evaluate their performance based on different error 
metrics and computational time. The results of the study 
showed that all models performed satisfactorily, even with 
relatively small-sized data. The LSTM model 
outperformed the others in terms of the evaluation metrics 
dominated the other models with MAPE value of 7.1%, 
although it required more memory to train, and was 
sensitive to different random weight initializations. On the 
other hand, the GRU model was faster and more memory-
efficient than LSTM and BiLSTM, making it suitable for 
applications where memory allocation and quick 
processing are important. 

It is worth noting that time-series modeling and 
forecasting are not restricted to only recurrent models like 
LSTM and GRU. ELM was found to be more efficient in 
terms of computational time, as it reached solutions 
quickly than other ML techniques. Because of its quick 
learning capabilities from a training data set, ELM would 
be better suited for real-time applications where 
processing speed is crucial (2.77 seconds). One important 
consideration for selecting a split percentage is that it 
should meet the project's objectives while taking into 
account the computational cost in training and evaluating 
the model, as well as the representativeness of the training 
and test sets. Overall, this research offers valuable 
perspectives into the development and comparison of 
different machine learning approaches for predicting time 
series of wind speed data and sheds light on important 
factors that need to be considered in selecting the best 
approach for a given application.  
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