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Abstract- As more repetitive operations (such as riveting 
and welding) are performed by robots in the automotive 
industry, it is important to evaluate their reliability to adopt 
an appropriate maintenance management strategy. With 
Industry 4.0, businesses are moving toward complete 
process automation and the use of intelligent sensors to 
collect data, evaluate it, and predict robot behavior and 
potential issues using artificial intelligence methods like 
Support Vector Machine (SVM). In this research, six 
welding robots were followed and data was collected 
during a year of operation.  After the analysis of data 
related to actual failures, Weibull's law, and Support 
Vector Regression (SVR) techniques were used to 
calculate the reliability functions. Several MATLAB 
programs were used to determine the parameters for the 
prediction laws and the graphics. To properly manage the 
maintenance of these robots, we then suggested a 
methodology that should be followed. 
 
Keywords: Robotics, Reliability, Maintenance, SVM, 
SVR, Prediction. 
 

1. INTRODUCTION 
The reliability functions of robots can be identified, 

which allows the definition of the proper maintenance 
management [1], observation of degradation, and the 
planning of predicted dates for replacement or renovation 
[2, 3]. A novel kind of maintenance is starting to adapt to 
the present industrial revolution, known as Industry 4.0, 
which uses new technologies [4], particularly artificial 
intelligence, inside industrial production structures. This 
new type of maintenance has been developed to match 
Industry 4.0 and become more reactive and efficient. This 
is called maintenance 4.0 or predictive maintenance [5].  

To evaluate data and identify defects early on, 
maintenance 4.0 employs the analytical tools of artificial 
intelligence, particularly machine learning [6]. Statistical 
methods like the Weibull probability law are used to 
examine system reliability, it is the most frequently applied 
law in reliability. It describes how a system performs at a 
specific moment. Various techniques can be employed to 
define the Weibull distribution's parameters. The support 

vector machines (SVM) have been selected. This 
technique will be detailed later in this paper.  

In the present research, we analyze six welding robots’ 
reliability of the assembly line in an automotive 
manufacturing implemented in Morocco. Over a period of 
a year of use, we gathered failure information from the six 
robots. The life cycle phases and reliability functions of the 
robots are determined using this data. For this reason, 
MATLAB scripts have been created [7]. We first introduce 
the reliability and several sorts of maintenance in the first 
part, then we review SVM and Weibull's law. The 
technical information about the robots is described and an 
analysis of the results is provided in the fourth part. 
Finally, an appropriate maintenance management 
approach is suggested. 
 

2. RELIABILITY AND MAINTENANCE 
When an entity is performing its task at its starting 

point, reliability is the probability R(t) that the entity will 
continue to carry out the needed function under the 
circumstances specified at some later time (0, t) [8]. The 
main concern of reliability is to predict the probability of a 
system failure by establishing a reliability law. The curve 
"bathtub", as it's known, presented in Figure 1 is frequently 
used to describe the failure rate λ(t) of equipment [9]. It 
illustrates three stages in a product's life cycle and describes 
how the failure rate has changed over time:  
- The youth stage, which has a decreasing failure rate, is 
concerned with initial failures resulting from problems with 
the design or production process. 
- A service lifetime with a consistent breakdown rate is a 
sign of unexpected breakdowns. 
- Ageing phase with increasing breakdown rate: this time is 
concerned with breakdowns carried on by aging. 
Due to deterioration in mechanical systems, the curve has 
no flat component (λ=constant) and rises once the running-
in time is over. 

Numerous statistical approaches can be used to identify 
reliability functions, Weibull's law will be applied in this 
paper. According to international standards, maintenance 
is a series of operations meant to keep an asset in a 
particular state or enable it to perform a specific service. 
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Figure 1. Bathtub curve 
 

There are various forms of maintenance [2]: 
• Corrective maintenance, sometimes referred to as 
curative or reactive maintenance, includes engaging with 
the equipment after a breakdown has occurred [10]. 
• Preventive maintenance involves replacing components 
that could result in a service interruption or unexpected 
expenses that are considered crucial for the business [11]. 
It depends on the following principles to prevent and 
reduce the probability of system failure: 
- Systematic maintenance means frequently replacing 
components that are too crucial for the operation of the 
unit, in accordance with a predetermined schedule. 
- Conditional maintenance: this type of maintenance is 
preventive and calls for a diagnosis before a component is 
replaced. 
- Predictive maintenance, also known as maintenance 4.0 
[12]is a new type that was created with Industry 4.0. It 
involves predicting breakdowns as soon as pre-signs are 
detected on the machine, allowing the necessary parts to 
be changed at the right time and reducing the expenses of 
changing other parts unnecessarily. 

Predictive maintenance analyzes data and detects 
defects early on using the analytical tools of artificial 
intelligence, especially machine learning. With this type of 
maintenance, the machine may be evaluated with 
information from implanted sensors, allowing for real-
time monitoring of the situation and the performing of the 
required maintenance. Unlike preventative maintenance, 
which plans to do regular checks on the equipment over its 
estimated life cycle. 
 

3. WEIBULL'S LAW 
The most well-known continuous probability law is 

Weibull's law. It is used in reliability [13], especially for 
determining the reliability prediction of systems [14]. In 
1951, Waloddi Weibull's name was added to this law. It is 
used to describe how a system performs during its life 
cycle [15]. The Weibull distribution employed in this 
article is a continuous distribution with three parameters 
[8]: 

( )
( )

t

R t e
βγ

η
−

−
=  (1) 

where, γ is the position or lag parameter, which is 
frequently set to 0. It shows the possible gap between the 
start of observation (the day we start observing a sample) 
and the start of the process we are studying (the day the 
observed process first showed symptoms). 

The η is the scaling parameter that indicates the 
duration of the average lifetime and β is the form 
parameter linked to the dynamics of the observed activity. 
 
3.1. Reliability Function 

The likelihood of success overall as a function of time 
is called the reliability:  

( )
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3.2. Unreliability Function 

Unreliability function indicates the total probability of 
failure between 0 and t: 

( )
( ) 1 ,  
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−
= − ≥  (3) 

 
3.3. Failure Rate 

Failure rate is the instantaneous likelihood of a failure 
at time (t+Δt) when it is known the equipment is 
functioning well at time t:  

1( ) ( )( ) ( ) ,
( ) 1 ( )

 f t f t tt
R t F t n

tβ γβ γλ
η

−−
= =

−
≥=  (4) 

There are many ways to estimate the variables of a 
function that is known, or to relate an equation to a fog of 
points, that can be used to determine the Weibull 
distribution's parameters. The approaches most frequently 
employed are: 
- Graphical estimating (Weibull paper): a quick method 
with poor accuracy. 
- The least squares method: which is simple and time-
tested. 
- The Maximum Likelihood Estimation (MLE) has 
interesting asymptotic characteristics. 

The SVM methodology, that we employed in this study 
and will be detailed in the next section.  

 
4. SVM AND SVR METHOD 

 
4.1. SVM and SVR Definition 

Support vector machines are algorithms used in 
machine learning for managing classification, regression, 
or anomaly detection problems [16]. SVMs were 
developed in the 1990s based on the Vapnik-Chervonenkis 
theory, a statistical learning theory created by Russian 
computer scientists Vladimir Vapnik and Alexey 
Chervonenkis [17]. Due to this model's efficiency with 
massive amounts of data, theoretical warranties, and 
successful practical application, it was adopted 
immediately [18]. SVMs are liked for their simplicity of 
usage because they only need a few parameters. 

In 1996, Vladimir Vapnik presented a technique for 
employing SVMs to address regression issues [19]. He 
worked with other mathematicians Harris Druckerand 
Alex Smola on the project. By utilizing the kernel method, 
which is popular in machine learning since it enables the 
use of linear classifiers to address non-linear problems, this 
is made achievable. Support Vector Regression (SVR) is 
the name given to the regression variant of SVM. 
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The SVM research the issue of categorizing a corpus 
of instances into two classes based on whether they have 
labels of +1 or -1. In regression, labels with any real value 
are considered, and samples from the data set are used to 
try to infer the function that links the label to the vector 
[19]. Again, we have investigated the situation of linear 
regression, which is generalizable to other regressions by 
utilizing distributions as rather than scalar products [20]. 
The provided regression presupposes a linear separator of 
the form; 

( ) , if x w x b= 〈 〉 +  (5) 
where, , iw x〈 〉  is the scalar product.  

In case of the data training is precisely expresses by the 
separator, a ε > 0 approximately the error, to accomplish 
this goal, it is important to reduce the vector norm w to 

2 t1 ,subject 
2

o ,
i i iW w x b y ε∀ + − ≤   (6) 

In reality, it is challenging to maintain all the instances 
in a hyper-tube that is 2 ε wide. We will define an 
optimization function that allows some samples to deviate 
from this restriction. Two relaxation variables (Slack 
variables), iξ  and '

iξ , were added to the problem 
formulation to penalize the incorrectly categorized data. A 
cost parameter C>0 creates an agreement among the 
amount of misclassified samples and the margin width, 
which plays a role of regularizing. The term "soft margin" 
refers to this novel perspective on the issue. Figure 2 serves 
as an example of this point. Regression optimization 
involves playing with , ,w b ξ  and 'ξ  to minimize. 
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Figure 2. Error function [20] 
 
 
 
 

4.2. Weibull Distribution Parameter Estimation Using 
SVR 

From the reliability law (2), we are able to type: 

ln(1 ( )) ( )tF t βγ
η
−

− = −  (9) 

1ln(ln( )) ln( )
1 ( )

t
F t

γβ
η
−

= ∗
−

 (10) 

1ln(ln( )) ln( ) ln( )
1 ( )

t
F t

β γ β η= ∗ − − ∗
−

 (11) 

As y x bβ= +  (12) 
So, the Equations (13) and (14) are used  

1ln(ln( ))
1 ( )

y
F t

=
−

 (13) 

ln( ) and ln( )x t bγ β η= − = −  (14) 
The maintenance staff keeps careful surveillance on the 

robots because they are important equipment’s in the 
vehicle assembly facility. Since we expect that γ to be zero, 
the law takes the following linear form: 
y x bβ= +  (15)                                  

The SVR equation's identification method is used to 
estimate the coefficients β and b. 

wβ∗ ∗=  (16)                                         
b

e βη

∗

∗−
∗ =  (17) 

 
5.WELDING ROBOTS FAILURES ANALYSIS 

 
5.1. Context 

The present research centered on industrial robots’ 
deployment in a factory implemented in Morocco which 
produce vehicles for both the home market and export 
abroad. The robots employed to ensure the welding in the 
sheet metal industry are the subject of this study. 
Manufacturing robots are computer-controlled devices 
that are capable to perform a variety of tasks [21], such as 
the welding in this instance. They include the following 
elements [22]: 
 A mechanical element like axis, articulation. 
 An electrical element, like wires, motors. 
 An electronic part, like sensor, card, or control system. 
 A form of computer science that enables dialogue 
between humans and robots. 

Robots assemble the stamped parts that make up the 
vehicle bodywork in our study scenario [23]. Numerous 
welding techniques, such as ultraviolet welding, flow of 
gas welding, welding by spot, and riveting, are employed 
during the assembly. Over 5000 automated welding points 
are used during the assembly of the bodywork. The sheet 
metal lines employ more than 200 robots from a variety of 
multinational brands. Figure 3 shows a picture of a 
welding robots. 
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Figure 3. Welding line  
 

5.2. Robots’ Technical Data 
Six robots that perform welding operations above the 

side doors and at the wheel arch of body serve as subjects 
of our study. These robots have six axes as shown in Figure 
4 and handling capacity ranging from 150 to 500 kg. 

 

 
 

Figure 4. Robot with 6 axes 
 

Spot-welding tongs are an element of the robots, as 
shown in Figure 5. Depending on the geometry of the 
body, each robot has the proper welding tongs that allow 
accessibility to the welding areas. The use of spot-welding 
tongs, a piece of industrial the use of spot-welding tongs, 
a piece of industrial equipment, eliminates the need for 
additional material during the welding operation. A 
summary of the robots' properties is given in Table 1. 

 

 
 

Figure 5. Robot equipped by spot-welding tong 
 
 
 
 
 

Table 1. Robots’ properties 
 

 A1 A2 A3 A4 A5 A6 
Number of welded spots 21 15 16 15 21 16 

Welding clamps type RXE RXA RJG RXA RXE RJG 
Maximum of electrode 

forces (DaN) 450 630 425 630 450 425 

Clamp Weight (Kg) 193 98 161 98 193 161 
 
5.3. Breakdowns Data Analysis 

Throughout the robots' usage of a year, breakdown 
information has been collected, we are particularly 
interested in the following data from the numerous 
records: 
• Date of failure;  
• Duration of failure (in hours, minutes, and seconds);  
• Failure type. 
 
5.3.1. Data Analysis by Number of Failures 
 The robots have sensors that monitor each action, 
including error messages that are shown as alerts and the 
number of welds that are not finished within the 
predetermined cycle time. In this study, we only keep the 
data that are considered as failures and need the 
intervention of the maintenance staff to be corrected. 
Robots are always in use, and any breakdown can be 
repaired. The information is immediately recorded. 
Failures have been arranged by months as shown in Table 
2 for simplicity of use. 

 
Table 2. Number of failures by month  

 
 Number of failures by Robot 

Month A1 A2 A3 A4 A5 A6 
January 13 18 2 20 53 10 
February 3 15 2 6 1 7 
March 4 5 2 1 6 25 
April 0 8 0 0 3 18 
May 1 10 1 0 10 13 
June 3 13 2 2 7 25 
July 2 15 1 0 6 27 

August 1 2 10 4 4 43 
September 7 3 0 1 2 2 

October 53 5 2 3 7 12 
November 7 7 3 12 8 23 
December 5 5 1 3 18 20 

 
5.3.2. Results and Discussion 

We determine the distribution function F(t), which is 
the reciprocal of R(t). At time ti, there are nj failures taking 
place in the intervals [tj–1; tj]. Then, we have; 

1

i

j
j

i

n
F

N
==
∑

 (18) 

For every robot, Fi is determined monthly. Actual data 
were linked to straight lines using SVR algorithms. With 
95% confidence level, the Weibull distribution 
coefficients were identified. The SVR lines for the six 
robots are shown in Figures 6a to 6f. 
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Figure 6. a) The simple regression SVR of A1 robot, b) The simple 
regression SVR of A2 robot, c) The simple regression SVR of A3 robot, 

d) The simple regression SVR of A4 robot, e) The simple regression 
SVR of A5 robot, f) The simple regression SVR of A6 robot 

 
According to the findings, robots A1, A3, A4, and A5 

did not achieve their goal. To solve the problem, we divide 
the scatter plot into two subsets. This case presents a 
situation in which two distinct failure modes overlap. The 
double regression of these four robots is shown in Figures 
7a to 7d. The first phase runs from January to August, 
while the second runs from September to December. 
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Figure 7. a) The double regression SVR of A1 robot, b) The double 
regression SVR of A3 robot, c) The double regression SVR of A4 

robot, d) The double regression SVR of A5 robot 
 
The values of β and η are grouped in Table 3. 

 
Table 3. β and η values 

 

Robot Single regression Double regression 
β η β1 η1 β2 η2 

A1 1.2293 5998.4 0.3868 103700 9.1859 6019 
A2 1.2662 3066.1     
A3 1.5981 4333.3 1.1011 6786.3 5.3692 5376.6 
A4 0.6814 2980.4 0.2705 7200.5 6.6457 5763.2 
A5 0.7233 2722.1 0.4253 3826.4 5.2542 5559.5 
A6 1.8509 4344.6     

 
5.3.3. Acceptance Test 

The selected Weibull distribution is compared to the 
experimental points with a 5% error to check if it matches.   
We calculate the resulting error using the Kolmogorov-
Smirnov approach [24]. Table 4 resume values of reach 
robot. 

1,...,
max( ) with ( ) ( )j i i i th i

i N
F t F tε ε ε

=
= = −  (19) 

 
Table 4. ɛj values 

 

Robot Single regression Double regression 
ɛj ɛj 

A1  0.277 0.127 
A2 0.112   
 A3 0.252 0.259 
 A4 0.169 0.105 
A5 0.133 0.096 
A6 0.096   

 
We compare the biggest variation, labeled D=ɛj, with 

the value of D (N=12, α=0.05) = 0.375. We conclude that 
the test is acceptable as D<DN,α. 
 
5.3.4. Root Mean Square Error Calculation 

The mean square difference between values that a 
model predicts and observed or actual values is known as 
root mean square error (RMSE) [25]. In general, a lower 
RMSE number indicates greater precision. We have 
calculated the RMSE as indicated in Table 5, in the both 
cases with a single regression line and with a double 
regression. 

 

Double regression provided us with better predicted 
accuracy for the four robots (A1, A3, A4, and A5) since 
we observed that the RMSE value is lower in the case of 
double regression than in the case of a single straight line. 

 
Table 5. RMSE values 

 

Robot Single regression Double regression 
RMSE RMSE 

A1  0.1951 0.0423 
A2 0.0585   
 A3 0.1182 0.0868 
 A4 0.1150 0.0445 
A5 0.0803 0.0515 
A6 0.0543   

 
5.3.5. Reliability and Failure Functions  

The reliability curves are presented in Figures 8a to 
8f. 
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Figure 8. a) A1 Robot reliability function, b) A2 Robot reliability 
function, c) A3 Robot reliability function, d) A4 Robot reliability 
function, e) A5 Robot reliability function, f) A6 Robot reliability 

function 
 

The system's reliability evolves normally in the first 
part of the curve, then deteriorates sharply. This confirms 
our earlier observation that robots experience two different 
life cycles during the observation period. The results for 
the β shape parameter for all robots are summarized in the 
Table 6. 
 

Table 6. β shape parameter values 
 

Robot Β Value Life cycle phase 

A1 β1 = 0.3868 
β2 = 9.1859 

The robot passes from the youth phase to the 
aging phase (wear and tear) 

A2 β = 1.2662 The robot is relatively in its useful life end 
and is beginning to age 

A3 β1 = 1.1011 
β2 = 5.3692 

The robot moves from the useful life phase to 
aging phase (wear and tear) 

A4 β1 = 0.2705 
β2 = 6.6457 

The robot passes from the youth phase to the 
aging phase (wear and tear) 

A5 β1 = 0.4253 
β2 = 5.2542 

The robot passes from the youth phase to the 
aging phase (wear and tear) 

A6 β = 1.8509 The robot is relatively in its useful life end 
and is beginning to age 

 
Figures 9a to 9f presents the evolution of the failure 

rate for the different robots. 
Our research has shown that each robot has a unique 

failure rate, which must be considered while managing 
maintenance. In the current maintenance management 
system, corrective measures are still conducted as soon as 
a breakdown occurs, and preventive actions are scheduled 
twice during the plant's annual shutdowns (August and 
December). We suggest modifying the preventive 
maintenance schedule to prioritize robots based on life-
cycle phase and failure rates (β values) with more 
moderated frequencies.  

 

 

 
 

 
 

 
 

 
 

 
 

Figure 9. a) A1 Robot failure function, b) A2 Robot failure function, c) 
A3 Robot failure function, d) A4 Robot failure function, e) A5 Robot 

failure function, f) A6 Robot failure function 
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In this situation and using the available information, 
maintenance intervention should be carried out in the 
following priority order: A1 - A4 - A3 - A5, followed by 
A6 and A2. Due to the welding guns that these robots are 
equipped with, the reliability of the entire system is based 
on the reliability of the guns and the robot reliability. Wear 
phenomena affect the robots A1, A4, A3, and A5, and we 
examine the sorts of failure to identify which robot entity 
is impacted (the robot or the related clamp). 
 
5.3.6. Failure Type Analysis 

We divided failures into two families: number of 
failures involving clamps and failures involving just robots 
as shown in Table 7. Figure 10 presents the failure percent 
of each part: clamp and robot. 

 
Table 7. Number of failures by family  

 

 Robot  A1 A2 A3 A4 A5 A6 
Clamp failure 80 80 11 14 68 113 
Robot failure 19 26 15 38 57 112 

 

 
 

Figure 10. Failure-type repartition 
 

We note three categories: 
• Clamp Failures > robot failure: Robots A1 and A2. 
• Clamp Failures < robot failure: Robots A3 and A4. 
• Clamp Failures ≈ robot failure: Robots A5 and A6. 

During Preventive Maintenance, the same checklist is 
applied to all robots without taking the different types of 
failure in consideration. Our suggestion is to:  
 Create special checklists based on the component that 
affects system reliability most significantly, with 
particular focus on the robot or gripper.  
 Plan periodic, quarterly, or monthly inspections based 
on the severity and occurrence of breakdowns. 
 
5.3.7. Preventive Maintenance Efficiency 

As part of our ongoing failure analysis, we compared 
the average number of breakdowns per month before and 
after the preventative maintenance work done in August in 
Table 8 and Figure 11. 

 
Table 8. Average number of failures  

 
 A1 A2 A3 A4 A5 A6 

Welding clamp 
failure- Before 1.37 7.75 0.75 0.75 5.5 8.62 

Welding clamp 
failure- After 17.25 4.5 1.25 1.75 6 11 

Robot failure - Before 2 3 1.75 3.37 5.75 12.37 
Robot failure - After 0.75 0.5 0.25 3 2.75 3.25 

 
Figure 11. Average number of failures 

 
The average frequency of robot failures has decreased 

for all robots, indicating the effectiveness of the preventive 
maintenance. For all robots, except robot A2, we noticed 
an increase in the average number of welding clamp 
failures. So, for this reason, we suggest replacing the 
welding clamps spare parts, or the welding clamps 
themselves if the spare parts were changed during the 
preventive maintenance previous. In conclusion, we 
recommend the model presented in Figure 12 for improved 
robot system management. 

 

 
Figure 12. Maintenance management model 

 
6. CONCLUSION 

This work focused on optimizing the Maintenance of 
welding robots through reliability in the context of 
automobile manufacturer, Weibull's law and SVR 
algorithms were used in MATLAB to determine reliability 
functions by evaluating failure data gathered over the 
course of a year. The employed prediction law's 
acceptance test passes with minimal RMSE error levels. 
The values of β allowed us to decide which robots should 
receive priority maintenance. In order to concentrate 
maintenance efforts at the component that has an impact 
on system reliability, we examined the type of failure. The 
transition of existing maintenance from preventive to 
predictive, or maintenance "4.0", is suggested using an 
elaborate model.  
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The challenging part of the research was determining 
how to use the defect data, identify the information to be 
used, and filter it using internal standards. The choice of 
formulas, statistical rules, and regression tools to be 
employed was equally complicated, especially because the 
robots are still in service and any breakdown could be 
repaired. Our study was carried out on 6 robots, but the 
method followed is applicable to all welding robots used 
in the automotive industry. The reliability of robots can 
also be examined using various artificial intelligence 
technologies. 
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