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Abstract- In this paper, the conditions for the excitation 
of thermomagnetic waves are theoretically investigated. It 
is shown that, depending on the value of the electrical 
conductivity tensor, thermomagnetic waves are excited in 
the longitudinal and transverse  directions. It is proved 
that the excited wave is mainly of a thermomagnetic 
nature. In theory, the resulting dispersion equation is 
algebraically high powers with respect to the oscillation 
frequency. It is proved that if the value of the electrical 
conductivity tensor is the same, then the frequency of 
propagation of thermomagnetic waves is different. 
 
Keywords: Purity, Increment, Thermomagnetic Waves, 
Transverse Waves, Longitudinal Waves, Growth, 
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1. INTRODUCTION                                                                         

It was proved in [1, 2] that hydrodynamic motions in 
a plasma, in which there is a constant temperature 
gradient, a magnetic field arises. In this case, the plasma 
has oscillatory properties that are noticeably different 
from ordinary plasma. In such a plasma, thermomagnetic 
waves are excited, in which only the magnetic field 
oscillates. In the presence of an external magnetic field, 
the wave vector of thermomagnetic waves is 
perpendicular to the magnetic field or lies in the plane 

,Н Т∇
 

. The speed of thermomagnetic waves is 
comparable to the speed of sound and the speed of the 
Alfven wave. The temperature gradient is independent of 
time and coordinates. The Larmor frequency of charge 
carriers is less than the frequency of their collisions, i.e. 

1τψ << , eH
mc

ψ =  

In the presence of an electric field Е , a temperature 
gradient constТ∇ = , a concentration gradient of charge 
carriers n∇



and hydrodynamic movements with a speed 
( ),r tυ
 

, the electric current density has the form 

[ ]

 ,  0

j E E H T TH

H T nE E e
c e n

η η β β

υ

∗ ∗ ′ ′= + − ∇ − ∇ 
  ∇ ∗ = + + >

  






 (1) 

The definition E from the vector Equation (1) reduces 
to solving the vector equation 

a bχ χ = +  


   (2) 

From Equation (2); 

( ) ( )  ,  b ba x a ba b bφ χ    = = + +    
    

   

 

At 2 1b << , we will get:  

2

rot
4

rot ,
4

H cE K TH H
c

c TH H K T
c

υ

πη
η ρ

ρπη

 
   ′= − − ∇ + − 

′ ∇ − + + ∇ 





   

 

 (2*) 

where, obtaining expression (2*), the Maxwell equation 
4rotH j
c
π

=




was used, where K α
η

= , 2K β η βη
η

′ ′−
= . 

The σ  is the electrical conductivity coefficient, η′  is the 
differential thermopower, and η  is the coefficient of the 
Nerst-Ettinshausen effect. Substituting (2) into the 

equation rotН с E
е

∂
= −

∂





, we obtain an equation containing 

Н


and Т∇


. It was proved in [1, 2] that at k H ′⊥




, a 
thermomagnetic wave is excited with a frequency 

Т сK k Тϖ ′= − ∇



 
It was proved in [3] that the flow of charge carriers in 

conductive solids creates hydrodynamic motions and, 
therefore, it is possible to excite thermomagnetic waves 
in conductive media. It was proved in [4] that, depending 
on the value of the electrical conductivity tensor ikη , 
several thermomagnetic waves can be excited in 
anisotropic conducting media. In this theoretical work, 
we will prove that, depending on the value of the tensor

ikη , several thermomagnetic waves with different 
frequencies are simultaneously excited in anisotropic 
conducting media. When the wave vector of 
thermomagnetic waves is directed along the temperature 
gradient ||k T∇




 (longitudinal wave), we determine the 
frequencies of thermomagnetic waves.  
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Let us prove that at ||k T∇



 (longitudinal wave) and 

at k T⊥ ∇




 (transverse wave) thermomagnetic waves can 
grow (instability). The growth rate of the thermomagnetic 
wave differs significantly at ||k T∇




and at k T⊥ ∇




. 
 

2. THEORY  
In the presence of a temperature gradient and an 

external magnetic field in an isotropic solid, the total 
electric field [4-6] has the form: 

( )
( )

E j jH jH H

TK K TH K TH H
x

ξ ξ ξ ′′ ′′= + + + 
∂  ′ ′′+ + ∇ + ∇ ∂

   
 

    

 (3) 

In an anisotropic solid, all coefficients in Equation (3) 
are tensors. Then for an anisotropic solid body (3) we will 
have the form: 

( )
( )

i ik k ik ik kk

ik ik ik kkk

E j jH j jH H

TK K TH K TH H
x

ξ ξ ′ ′ ′′= + + + 
∂  ′ ′′+ + ∇ + ∇ ∂

  


    

 (4) 

where, ikj  is the reciprocal tensor of the ohmic resistance 
1

ik
ik

ξ
η

= , ikK  is the differential thermoelectric power, 

and ik′Λ is the Nerist-Ettinizhausen coefficient. We will 
consider an external magnetic field in an anisotropic 
solid. Then in Equation (4) the terms containing 

, ,ik ik ikKξ ξ′ ′′ ′′ is equal to zero. Then for our problem the 
system of Equations (5)-(7). 

1

4 1

i ik k ik k
E j K TH

HrotE
c t

ErotH j
c c t

ξ

π

 ′ ′ ′= + ∇ 

′∂′ = −
∂

′∂′ ′= +
∂












 (5) 

Let us assume that all variables have the character of a 
monochromatic wave. Then from Equation (5) we get; 

2

4 4

i ik k ik k

ik

E j K TH

iс ij k kE E

ξ

ϖ
πϖ π

 ′ ′ ′= + ∇ 

  ′ ′ ′= +  



 


 (6) 

From Equation (6) we will get 

( ) ( )

( ) ( )

2 2 22

4 4i ik k ik k

ik ik
k k

i c kiсE kE E

cK cK
TE k T E

ϖ
ξ ξ

πϖ πϖ

ϖ ϖ

−
′ ′ ′= Λ + +

′ ′
′ ′+ ∇ Λ − ∇





  

 (7) 

 
2.1. Transverse Thermomagnetic Waves k T⊥ ∇




 
When k T⊥ ∇




you can choose the coordinate system 

( )1 2 3 1
1

2 3

0 ,  0 ,  0

0 ,  0

Tk k k k k T
x

T T
x x

∂
≠ = = = ∇ =

∂
∂ ∂

≠ =
∂ ∂




 (8) 

With this choice, from Equation (7) we easily obtain; 

( )2 2 22

1 ,  if
 ,  

0 ,  if

 ,  
4 4

ik
i il l k ik l k

k

i ik k ik

cK TE C k k D k E
x

i k
E E

i k

i c kiсC D

ξ ς
ϖ

δ δ

ϖ

πϖ πϖ

′ ∂′ ′= + + ∂ 
=

′ ′= =  ≠

−
= =

 (9) 

Denote 
il

ik il l k ik l
k

cK TC k k D k
x

φ ξ ς
ϖ
′ ∂

= + +
∂

 (10) 

Then, from (9) we will get  
12

11 11 12 12

2 2 2

13 13

22
21 21 22 22

23 23

32
31 31 32 32

33 33

 ,  
4

 ,  
4

 ,  
4

 ,  
4

i i

c ki

i i

i
i i

i

ϖϖψ ς ψ ης
π ϖ

ϖψ ης η
πϖ

ϖϖψ η φ ηξ
π ϖ

ψ ηξ
ϖϖψ ξ ψ ηξ

π ϖ
ψ ηξ

= = +

−
= =

= = +

=

= = +

=

 (11) 

Substituting (11) into (9) we get 
( ) 0ik ikψ δ− =  (12) 

or  

( )( )( )
( )
( ) ( )

31 12 23 21 32 13

11 22 33

31 13 22

32 23 11 21 12 33

1 1 1

1

1 1 0

ψ ψ ψ ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ ψ ψ

+ +

+ − − − −

− − −

− − − − =

 (13) 

Dispersion Equation (13), taking into account (11), 
has the form 

5

0
1

0i i
i

u uϖ
=

+ =∑  (14) 

The fifth degree relative to the purity of the vibration 
of Equation (14) has a very complex form. Simplification 
of Equation (14) requires a lot of mathematical 
approximations. However, Equation (14) is easily 
simplified depending on the tensor ikς . If 

12 13 22 23 32 33

11 21 31

ξ ξ ξ ξ ξ ξ
ξ ξ ξ

= = = = =

= =
 (15) 

The dispersion equation has the form: 

( )

211
22

11
13 12 22

2 2

22 33 22

1
2 2

1
4

0
2

i

i

ic k

ξ
ξ ϖ

π
ξ

ϖ ϖ ϖ ϖ
π

ϖ ϖ ξ
π

 + + 
 

 + + − − +  

+ + − =

 (16) 

Substituting 0 iϖ ϖ ϕ= + . 
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Then we obtain from Equation (16) the following two 
equations for determining 0ϖ  and ϕ  

( )2
0 0 13 12 22

0 22 33

1 1
2 4 4

0

ξξϖ ξϖ ϕ ϖ ϖ ϖ ϕ
π π π
ϖ ϖ ϖ

− − + − −

− + + =
 (17) 

( )2
0 0 13 12 22 0

2 2

1 1
4 2 4

0
2

c k

ξξϖ ξϖ γ ϖ ϖ ϖ ϖ
π π π

ξϕ
π

+ + + − −

− − =
 (18) 

From Equation (18)  

( )
2 2

2
0 13 12 22 0

1
4 4 2

c kξ ξϕ ξϖ ϖ ϖ ϖ ϖ
π π π

= + + − −  (19) 

Substituting Equation (19) into Equation (17)  

( )

( )

2
0 13 12 22

2 2
2
0 13 12 22 0

0 22 33

1
2 4

1
4 4 2

0

c k

ξξϖ ϖ ϖ ϖ
π π

ξ ξξϖ ϖ ϖ ϖ ϖ
π π π

ϖ ϖ ϖ

− + − ×

 
× + + − − − 
 

− + + =

 (20) 

From Equation (20) it can be seen that at 
22 13 12ϖ ϖ ϖ= + , 

( )22 332
πξ

ϖ ϖ
=

+
( )0 22 332ϖ ϖ ϖ= +  (21) 

Thus, a purely thermomagnetic wave. Substituting 
Equation (21) into Equation (19) we get 

( )
2 2

22 33
22 33

1 1
2 2

c kϕ ϖ ϖ
ϖ ϖ

= + −
+

 (22) 

It can be seen from Equation (22) that the wave with 
frequency Equation (21) grows if 22 33 ckϖ ϖ+ >> . 

 
2.2. Longitudinal Thermomagnetic Wave ||k T∇




 

Under the condition ||k T∇



, you can choose the axes 
so that 

1  ,k k= 2 3 0 ,k k= = 1
2 3 1

0 ,  0T T Tk
x x x
∂ ∂ ∂

= = ≠
∂ ∂ ∂

 

2 3
0 ,  0T T

x x
∂ ∂

≠ =
∂ ∂

 

With this choice, the tensors have the form ikφ  

12
11 11 12 12

13
13 13 21 21

2322
22 22 23 23

32
31 31 32 32

33
33 33

 ,
4

 ,
4

 ,

 ,
4

i i

ii

i i

i i

i

ϖϖψ ξ ψ ηξ
π ϖ

ϖ ϖψ ηξ ψ ξ
ϖ π

ϖϖ
ψ ηξ ψ ηξ

ϖ ϖ
ϖϖψ ξ ϕ ηξ

π ϖ
ϖ

ϕ ηξ
ϖ

= = +

= + =

= + = +

= = +

= +

 (23) 

Substituting Equation (23) into Equation (13) we get: 

( )

( )

( )

( ) ( )

( ) ( )

4
31 21 23 31 13 323

3
11 22 11 332

2 2
31 21 23 31 13 323

322
11 22 33 11 33 31 132

2 2 22
11 22 11 33 11 213

2 2
2

31 13 322

64
1

64

2
64

2
4 16

1 1
464

1
4 64

i

i c k

i

ic k

ic k c k

ξ ξ ξ ξ ξ ξ ϖ
π

ξ ξ ξ ξ ϖ
π

ξ ξ ξ ξ ξ ξ
π

ϖ
ξ ξ ξ ξ ξ ξ ξ ϖ

π π
ϖ

ξ ξ ξ ξ ξ ξ ϖ
ππ

ξ ξ ξ
π π

− + +

+ + +

+ + +
+ + + + + +

+ − + − + − − 

−

( )

2
22 33

2 2
22 11 33 13 31 222

1 0
64

c k

ξ ξ

ϖ ξ ξ ξ ξ ϖ
π

 − − − 
 

− + − =

(24) 

If the tensors have the same values in all directions
,ikξ then from Equation (24) we get: 

( )4 3 2 2
22

3 22
22

16 48 12

64 1 0
2

1

x ix i x

i i x

x
ck

π π π ϖ ξ

ϖ ξ
π ϖ ξ

π
ξϖ

ξ

+ + − + +

 + − + − = 
 

=
<<

 (25) 

Assuming 0 1 1, 0x x ix x= + << from Equation (25), we 
get: 

4 2 2 2
0 0 1 0 22 0 1

3 322
0 1 22

48 48 24

64 64 0
2

x x x x x x

x x

π π πϖ ξ
ϖ ξ

π π ϖ ξ
π

− − − +

+ + − =
 (26) 

3 3 2 2
0 1 0 0 1 22 0

3 2
0 22 1

4 16 96 12

64 32 0

x x x x x x

x x

π π πϖ ξ

π π ϖ ξ

+ − + −

− − =
 (27) 

From Equations (26) and (27), it can be seen that at 
0 1x >> , thermomagnetic waves do not exist, then 

Equations (26) and (27), we have 
2 3

22 0 1 22 0 1 2224 32 64 0x x x xπϖ ξ π ϖ ξ π ϖ ξ− + + − =  (28) 
2 3 2

0 1 0 22 196 64 32 0x x x xπ π π ϖ ξ− − − =  (29) 

From Equation (29), we will get 22
0 1 ,

2
x xϖ ξ

π
= −

0 22
1

3
x ϖ ξ

π
< . Substituting into Equation (28) we get: 

1 1

22 22
0

2 2 1,
3 3

2
2 3 3

π πχ ϖ
ς

ϖ ϖπϖ
π

= = ×

= − × = −
 (30) 

From Equation (30) it can be seen that the wave with 

frequency 22
0 3

ϖ
ϖ = − is increasing. 

0 22 22

1

3 1
3 2 2

ϖ ϖ ϖ ξξ
ϖ π π

= × = << , 22 2ϖ ξ π<<  
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Output figures and outcome the following results: 
1. Thermomagnetic waves with different frequencies are 
excited in anisotropic conducting media. These waves 
can be longitudinal ||k T∇




and transverse k T⊥ ∇




. 
2. Frequencies in anisotropic media change depending on 
the value of electrical conductivity in these media. These 
waves are growing in all experimental values of the 
electrical conductivity of the medium. 
3. In contrast to isotropic media, in anisotropic media, 
thermomagnetic waves are excited with some values 
without an external magnetic field. Dispersion Equations 
(26) and (27) have solutions in different approximations 
with respect to the real frequency of thermomagnetic 
waves. Naturally, thermomagnetic waves can propagate 
in different approximations. We managed to solve 
dispersion Equations (26) and (27) in approximations 
under existing experimental conditions. In anisotropic 
media, we have chosen the tensor in the form Equation 
(23) for ||k T∇




 and in the form Equation (11) for

k T⊥ ∇




. 
The studied excited thermomagnetic waves in other 

directions (i.e., k makes some angle with T∇


) shows that 
the growth of such thermomagnetic waves is weaker than 

||k T∇



and k T⊥ ∇




.  
 

3. CONCLUSIONS 
From the above conclusions, it follows that in 

anisotropic conducting media, it is possible to excite a 
number of thermomagnetic waves with frequency 
frequencies. However, at present, there are no 
experimental data on thermomagnetic waves in the public 
domain. From Equation (30) one can calculate the 
frequency of these waves. 

22
0 3 3 3

TcKk Tϖ ϖ
ϖ ∇

= − = =




 

This frequency is three times less than the frequency 
of thermomagnetic waves in plasma (i.e., than the 
frequency Tϖ ). 
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