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Abstract- This study aims to estimate the solar potential 
of a given area by integrating urban land-use data from 
Sentinel-1 imagery and digital surface models (DSM) 
using the Solar Radiation tool. Solar irradiation exhibits 
temporal variations influenced by climatic conditions and 
the location of the sun. Accurate prediction of solar 
radiation is crucial for decision-making in renewable 
energy and urban planning. The Random Forest algorithm 
is employed for urban land use classification, providing 
reliable results in distinguishing different land use 
categories, especially urban areas. Evaluation metrics such 
as branching factor, miss factor, urban detection 
percentage, and quality percentage assess the performance 
of the classification model. The estimation of solar 
potential maps allows for the identification of areas with 
high solar energy potential, facilitating site selection for 
solar energy installations. The study highlights the 
challenges of calibrating atmospheric parameters and 
emphasizes the importance of considering key inputs such 
as atmospheric transmission, elevation, slope, and 
orientation in the Solar Radiation tool for accurate 
calculations. The findings contribute to understanding 
solar potential mapping, remote sensing applications in 
urban land use analysis, and inform decision-making for 
sustainable development and renewable energy utilization. 

 
Keywords: Remote Sensing, Digital Surface Models 
(DSM), Random Forest Algorithm, Solar Radiation Tool, 
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1. INTRODUCTION                

The global demand for electricity continues to rise, 
leading to an increasing shift towards exploring alternative 
energy sources. The use of fossil fuels as the primary 
source of electricity has contributed significantly to 
environmental pollution, climate change, and global 
warming. In response, governments and private 
organizations worldwide are investing heavily in 
renewable energy to meet their energy needs while 
reducing their carbon footprint. From the information of 
the International Energy Agency, global renewable energy 

capacity is projected to produce by 50% between 2019 and 
2024, with solar photovoltaics leading the growth. 
Renewable energy sources are expected to account for 
nearly 30% of the world's electricity generation by 2024 
[1]. Thailand is among the countries that recognize the 
importance of renewable energy and its potential to meet 
its growing demand for electricity while mitigating 
environmental damage. The Thai government has 
implemented several policies, including the Alternative 
Energy Development Plan (AEDP) and the Power 
Development Plan (PDP), to promote the use of renewable 
energy. The goal of these policies is to upsurge the share 
of renewable energy in the country's energy mix and 
reduce its dependence on fossil fuels. 

In recent years, Thailand's renewable energy section 
has witnessed significant growth, with a total installed 
capacity of over 11,000 MW from solar power, wind 
power, biomass, and hydropower. The country has set an 
ambitious target to make 30% of its total electricity from 
renewable energy sources by 2037 [2]. Furthermore, the 
promotion of energy production from existing renewable 
energy sources, the progress of the potential of renewable 
energy production with appropriate technology, and the 
progress of renewable energy for the benefit of social and 
environmental dimensions for the community are also 
prioritized [2]. Solar energy is a solitary of the most 
abundant renewable energy sources in Thailand due to the 
country's geographical location, which receives high levels 
of solar irradiance throughout the year. According to the 
Thai government has implemented various policies and 
incentives to promote the adoption of solar energy, 
including net-metering programs and investment tax 
incentives for businesses and households that install solar 
panels. Furthermore, the AEDP has set a target to increase 
its solar power capacity to 6,000 MW by 2037, which 
would account for 15% of the country's total installed 
capacity [2]. 

To achieve this target, accurately assessing the 
potential of renewable energy sources is crucial. Remote 
sensing technology has revolutionized the way we view 
and understand the Earth's surface, and one of its 
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significant applications are in the field of land-use and land 
cover analysis. This involves the specifying and mapping 
of different types of land use, such as urban areas, forests, 
agriculture, and water bodies [3]. Remote sensing data can 
be used to monitor changes in land use and develop land 
use models that help predict future changes [4]. It has also 
proven useful in disaster management, such as drought 
monitoring [5-16]. With the increasing demand for 
renewable energy sources, remote sensing has become an 
essential tool in assessing the potential for renewable 
energy generation, particularly solar energy. By using 
remote sensing data, researchers can identify suitable 
locations for solar energy generation based on factors such 
as land use, topography, and solar radiation. Solar 
radiation is the primary source of solar energy, and it is 
affected by various factors such as topography, 
atmospheric conditions, and land use. Remote sensing is a 
technology that can provide spatially explicit data on these 
factors, which can be used for modelling the potential of 
solar energy in the urban area.  

Urban areas are constantly expanding, and the demand 
for accurate and informed data on land-use and land-cover 
in urban areas is increasing. The rapid expansion of urban 
areas, driven by demographic, economic, social, and 
political factors, is a complex process that often leads to 
negative impacts on land-use and land-cover changes [17]. 
Remote sensing technology has become an essential tool 
for urban planners, policymakers, and researchers in 
mapping and monitoring land use in urban areas [18]. The 
Sentinel-1 satellite, through its Synthetic Aperture Radar 
(SAR) sensor, has shown great potential in mapping urban 
areas due to its ability to penetrate clouds and capture 
images regardless of weather conditions [19]. The use of 
SAR data has proven to be effective in urban area 
classification and mapping of topographies such as roads, 
buildings, and vegetation [20]. Several studies have been 
conducted on the use of remote sensing and SAR data for 
urban area classification based on spectral-based 
classification [21], object-based classification [22], and 
machine learning [23] techniques. 

The potential for solar energy in urban areas has gained 
increasing attention due to the growing demand for 
renewable energy sources and the require to reduce carbon 
emissions. Solar energy is a promising source of renewable 
energy for urban areas due to its ability to generate 
electricity from rooftops and facades of buildings, 
reducing the need for large land areas for energy 
production. Solar energy solutions, particularly solar 
photovoltaic (PV) systems, offer significant potential for 
addressing energy scarcity and improving living standards. 
These systems, commonly installed on building rooftops, 
efficiently convert solar energy into electric power, 
benefiting from technological advancements that have 
reduced manufacturing and installation costs [24, 25].  

Solar radiation is a crucial factor to consider when 
installing solar power plants, and it is important to identify 
areas with high solar radiation and predict its distribution 
over space and time. Solar radiation analysis can be 
conducted at specific points or across large areas, 
including administrative districts, and it involves spatial 

mapping as well as temporal analysis and visualization 
[26]. This paper proposes to evaluate the potential of solar 
energy in urban areas by utilizing remote sensing 
technology and analyzing solar radiation data. This 
involves employing remote sensing techniques, 
particularly using Sentinel satellite data with its SAR 
sensor, for accurate mapping and classification of urban 
land use. Secondly, the paper intends to approximate the 
solar radiation map in the urban area. Solar radiation plays 
a crucial part in assessing the potential for solar energy and 
informing planning processes. By analyzing the spatial and 
temporal distribution of solar radiation in urban areas, 
areas with high solar potential, such as rooftops and open 
spaces, can be identified. This information is valuable for 
decision-makers, urban planners, and stakeholders 
involved in promoting renewable energy and facilitating 
sustainable development in urban environments. 

 
2. MATERIAL AND METHOD 

 
2.1. Study Area    

The study area for estimating the solar radiation map 
in the urban area is Kantharawichai district, located in 
Maha Sarakham province, Thailand. Kantharawichai 
district is situated within the geographic coordinates of 
16.279577 N latitude and 103.243263 E longitude. 
Kantharawichai district is a predominantly rural area with 
some urban settlements. It is characterized by a mix of land 
use types, including residential areas, agricultural fields, 
commercial zones, and natural landscapes. The district 
experiences typical weather patterns and climatic 
conditions of the region, with hot and dry summers. The 
selection of Kantharawichai district as the study area is 
based on several factors. Firstly, Kantharawichai district is 
of interest owing to its potential for solar energy 
utilization. The district's geographical location and 
climatic conditions make it suitable for solar energy 
generation. By estimating the solar radiation map, we can 
identify areas with high solar potential, such as rooftops 
and open spaces, which can contribute to the evolution of 
solar energy projects and the encouragement of renewable 
energy in the district. Secondly, Kantharawichai district 
has a university located within its area, enabling the 
estimation of the solar power map. This estimation can 
effectively demonstrate the distinct differences between 
the rural and urban communities in terms of solar potential. 

 
2.2. Satellite Data 

In this study, we utilized the Sentinel-1 satellite data 
with its Synthetic Aperture Radar (SAR) sensor for 
accurate mapping and classification of urban land use in 
Kantharawichai district. The advantages of SAR 
technology, such as its all-weather imaging capability and 
high-resolution data acquisition, make it well-suited for 
urban land use analysis [27]. The Sentinel-1 satellite 
provided multi-temporal SAR data, enabling the capture of 
temporal changes in the urban landscape [28]. The SAR 
data were acquired for multiple time periods in the study 
area and underwent pre-processing steps, including 
radiometric calibration and speckle filtering, to enhance 
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their quality and interpretability [29-30]. Image processing 
techniques and machine learning algorithms were then 
applied to the SAR images for feature extraction and 
classification of urban land use categories [31]. The 
classification results were validated using ground truth 
data obtained through field surveys or existing land use 
maps, and statistical metrics were employed to assess 
accuracy. By leveraging the Sentinel-1 SAR data and 
employing advanced image processing and classification 
techniques, this study aimed to achieve accurate mapping 
and classification of urban land use in Kantharawichai 
district. The outcomes of this research provide valuable 
insights into the spatial distribution and dynamics of 
different land use categories within the urban area. This 
information is essential for assessing solar energy potential 
and supporting sustainable urban planning and 
development. 
 
2.3. Digital Surface Model (DSM) 

The Digital Surface Model (DSM) plays a crucial role 
as the primary data in GIS technique for solar potential 
investigation. It represents a raster data containing height 
information, combining the ground height from a Digital 
Elevation Model (DEM) with the altitude of all objects on 
the surface, including trees, edifices, canopies, and other 
structures [32]. DSMs are commonly generated using 
photogrammetry techniques, which involve analyzing 
aerial or satellite imagery [33]. The DSM can be derived 
from various sources such as LiDAR (Light Detection and 
Ranging) images or ortho imagery, enabling the generation 
of detailed 3D models for a specific urban area. The 
utilization of DSMs in solar potential analysis is crucial for 
understanding the topography and physical features that 
influence solar energy availability. By considering the 
height information captured in DSMs, shading effects, 
obstructions, and other factors impacting solar radiation 
can be accurately evaluated. This information is vital for 
identifying suitable locations for solar energy installations, 
optimizing energy generation, and promoting sustainable 
urban development.  
 
2.4. Methodology  

 The methods employed to estimate solar power 
potential from urban land use and digital surface model 
consist of several steps. Firstly, the preprocessing of 
Sentinel-1 data involves a series of seven processing steps. 
These steps include applying the orbit file to ensure 
accurate geolocation, removing thermal noise, eliminating 
border noise, radiometric calibration to standardize the 
backscatter values, applying speckle filtering to reduce 
noise and enhance data quality, performing range Doppler 
terrain correction to account for variations in terrain, and 
converting the data to decibel (dB) scale for better 
interpretation and analysis [30]. Secondly, the 
classification of urban land use is conducted using 
Random Forest methods. The pre-processed Sentinel-1 
data is utilized along with ancillary data and contextual 
information to train a Random Forest classifier.  

This supervised machine learning algorithm uses 
decision trees to classify different land use categories, 

enabling the identification and mapping of urban areas, 
vegetation, water bodies, and other land cover types. 
Finally, the estimation of solar power potential is 
performed by integrating the classified urban land use 
information with the digital surface model (DSM). Solar 
radiation modelling techniques are applied, taking into 
account factors such as shading, orientation, and slope, to 
estimate the amount of solar radiation received in different 
parts of the study area. This information helps identify 
areas with optimal solar conditions for potential solar 
energy generation. 
 
2.5. Classification of Urban Land Use from Sentinel-1 
using Random Forest Methods 

The Random Forest method was employed to separate 
urban land use from Sentinel-1 data. This supervised 
machine learning process has proven effective in handling 
complex datasets and is widely used in remote sensing 
applications. The Random Forest algorithm is an ensemble 
learning technique that merges multiple decision trees to 
make forecast or categorization. Random Forest has been 
widely used in various domains due to its robustness and 
accuracy. Random Forests utilize an ensemble of tree 
forecasters, where each tree is built using a random vector 
of input variables sampled independently and with the 
same spreading for all trees [34]. The Random Forest 
approach leverages multiple decision trees to enhance 
prediction accuracy [35]. In the case of image 
classification, Random Forest constructs numerous 
decision trees, and each tree provides a class estimation. 
The final estimation is made based on the majority vote 
from all the trees in the Random Forest model [36]. The 
Random Forest categorization process for urban land use 
involves the following steps:  
1) Data Preparation: Organize the input data with features 
(independent variables) and labels (dependent variable) to 
train the model,  
2) Random Subsampling: Create random subsets of the 
data through bootstrapping, generating different training 
sets for each decision tree in the Random Forest,  
3) Building Decision Trees: Construct decision trees using 
a subset of features and the corresponding bootstrap 
sample. Recursively split nodes based on a chosen 
criterion, such as the Gini index or information gain, 
4) Independent Predictions: Make predictions or 
classifications independently with each decision tree in the 
Random Forest. For classification tasks, use majority 
voting; for regression tasks, use averaging,  
5) Ensemble Aggregation: Combine predictions from all 
decision trees through aggregation. For classification, use 
majority voting to determine the final prediction; for 
regression, use averaging, and  
6) Assessing Feature Importance: Evaluate the importance 
of features in the predictions to identify the most 
influential factors contributing to the classification results. 

 
2.6. Evaluation of Urban Land-use Classification 

Evaluation of the urban land-use classification by 
using the overlap between the urban area results and the 
urban reference map using the four statistical 
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specifications including True Positive (TP), True Negative 
(TN), False Positive (FP) and False Negative (FN) [37]. 
The evaluation of area quality metrics in the context of 
urban land use classification typically includes the 
following metrics: branching factor, miss factor, urban 
discovery percentage, and quality percentage [38, 39]. 

 
2.7. Estimation of Solar Potential Map 

In this study, the estimation of the solar potential map 
was conducted by integrating urban land use data from 
Sentinel-1 imagery and DSM using the Solar Radiation 
tool. Solar irradiation exhibits temporal variations 
throughout the day, month, and year, influenced by 
climatic conditions and the sun's position. The Solar 
Radiation tool utilizes the hemispherical viewshed 
algorithm, as described in [40-42], to calculate solar 
radiation for specific geographic areas or designated point 
locations. The tool requires inputs such as location, 
elevation, slope, orientation, and atmospheric transmission 
to accurately estimate solar potential. By calibrating all the 
necessary parameters, the estimation of solar potential for 
the entire city was achieved. The calculations were 
performed using the Solar Radiation tool, initially 
considering solar radiation across the entire DSM to 
account for shading effects caused by trees and other tall 
structures. 
 

3. RESULT 
Satellite image analysis using Sentinel-1 involves 

preliminary image processing before analyzing the 
Sentinel-1 satellite data to improve accuracy in detecting 
urban land us. This preprocessing step was crucial for 
adjusting the reflectance values of the Sentinel-1 satellite 
imagery by taking into account the interferometric 
coherence values for each polarization channel, namely 
VV and VH. Interferometric coherence values range from 
0 to 1 and provide insights into the backscattering behavior 
of the different polarization channels. In the case of 
Sentinel-1 satellite images, the VV polarization typically 
exhibits higher backscattering values compared to the VH 
polarization. By considering the interferometric coherence 
values and analyzing the image, we observed high 
intensity values of sigma, indicating significant scattering 
behavior. These preprocessing steps were performed to 
ensure that the Sentinel-1 data were appropriately 
calibrated and ready for further analysis. 

The results of the preprocessing stage for the Sentinel-
1 data in the study area followed the established steps 
outlined for the preprocessing of Sentinel-1 data. These 
steps involved applying various techniques such as 
radiometric calibration, speckle filtering, and range 
Doppler terrain correction to ensure the data's quality and 
accuracy. The pre-processed Sentinel-1 data were then 
ready for subsequent analysis and estimation of solar 
potential in the study area. 

 

3.1. The Results of Classification of Urban Land-use 
Random Forest Methods 

In this research, the researchers employed a method 
called supervised classification with the Random Forest 
algorithm to classify urban or built-up areas. Supervised 
classification is a technique where the classification model 
is trained using labelled samples, and Random Forest is a 
popular machine learning algorithm that merges multiple 
decision trees for classification. To perform the 
categorization, sample areas were defined or selected as 
representative examples of built up and non-built-up areas. 
These sample areas serve as training data for the 
classification model. The results of the urban land-use 
classification revealed the distinct patterns and 
characteristics of urban land-use within the study area. The 
Random Forest algorithm successfully identified and 
differentiated between built up and non-built-up areas. 
The urban land-use map was shown in Figure 1. 

The evaluation of the urban land-use classification 
results using the Random Forest algorithm is based on 
several area quality metrics, as shown in Table 1. These 
metrics provide insights into the accuracy and 
performance of the classification model. Here are the 
results for the specific metrics: Branching factor: The 
branching factor is calculated as 7.439. It represents the 
average number of classes assigned to each class. A higher 
branching factor suggests that there may be some overlap 
or confusion between classes, indicating a less distinct 
classification result. 

 
Table 1. The evaluation results of urban land use classification 

 

Quality metrics Area level 
Branching factor 7.439 

Miss factor 0.289 
Building detection percentage 87.582% 

Quality percentage 61.458% 
 

• Miss factor: The miss factor is calculated as 0.289. It 
represents the percentage of misclassified pixels or the 
proportion of pixels that were assigned to incorrect land 
use categories. A lower miss factor indicates a higher 
accuracy in classifying urban land use, with fewer 
misclassifications. Building detection percentage: The 
building detection percentage is calculated as 87.582%. It 
represents the proportion of correctly classified urban 
pixels (specifically buildings) compared to the overall 
number of urban pixels in the training area. A higher 
building detection percentage indicates a higher accuracy 
in identifying and labelling urban buildings.  
• Quality percentage: The quality percentage is calculated 
as 61.458%. It measures the overall accuracy of the 
classification model, taking toward account both correct 
classifications and the exclusion of non-urban areas. It 
displays the percentage of correctly classified urban pixels 
relative to the total number of pixels identified as urban. A 
higher quality percentage indicates a more reliable 
classification result, with a lower inclusion of non-urban 
areas.
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Figure 1. Built-up and non-built-up areas using Random Forest 
 

These evaluation metrics provide valuable insights into 
the accuracy and performance of the Random Forest 
classification model for urban land use. They help assess 
the effectiveness of the model in distinguishing different 
land use categories and accurately identifying urban areas. 
These results are crucial for estimating the urban solar 
potential map in the next step, as they provide information 
on the quality and reliability of the classification output.  
 
3 .2. The Estimation of Solar Potential Map Results 

The quantity of solar radiation collected at the Earth's 
surface is one a fraction of the total radiation that is 
incident on the outer atmosphere, which is determined by 
the properties of the atmosphere. It is indicated as the ratio 
of energy (average wavelength) reaching the Earth's 
surface, ranging from 0 (no transmission) to 1 (complete 
transmission). The energy collected at the Earth's surface 
is at its maximum along the shortest path via the 
atmosphere (directly above or overhead). Latitude is used 
to calculate the surface area (in decimal degrees, positive 
for the northern hemisphere and negative for the southern 
hemisphere) and is utilized in the computations due to 
variations in solar intensity caused by spatial differences. 
The solar potential within the study area is calculated in 
watts per square meter (Wh/m2) since the intensity of 
sunlight varies based on location, necessitating the 
definition of specific zones within the study area. 

The results provided in the table represent the 
estimated solar potential in different Tambon (sub-
districts) for each month as shown in Table 2.  Table 2 
provides the estimated solar potential values for the entire 
tambon (subdistrict) area. These values represent the 
overall solar potential, considering all land uses within the 

tambon, including both urban or built-up areas and non-
urban areas. 

Upon analyzing the data, several observations can be 
made:  
 Variation in Solar Potential: The solar potential varies 
across different Tambon and months. For example, in 
Tambon Na Sri Noan, the solar potential ranges from 
8,763,474 Wh/m2 in January to 10,064,959 Wh/m2 in 
August. This indicates that the solar energy availability is 
influenced by both geographical location and seasonal 
changes.  
 Seasonal Trends: There is a clear seasonal trend in the 
solar potential. Generally, the solar potential increases 
from January to a peak in either April or May and then 
gradually decreases towards the end of the year. This trend 
can be observed in most Tambon in the Table 3.   
 Spatial Variation: The solar potential also varies 
spatially across different Tambon. For instance, Tambon 
Sri Suk consistently exhibits relatively higher solar 
potential values compared to other Tambon throughout the 
year. This suggests that Tambon Sri Suk may have 
favorable conditions for solar energy generation. 

Table 3 show the results provided in the table represent 
the estimated solar potential specifically from urban areas 
or built-up areas in different Tambon (sub-districts) for 
each month. Table 3, on the other hand, specifically 
focuses on the estimated solar potential values from urban 
or built-up areas within the Tambon. These values 
highlight the solar energy potential within urbanized 
regions, where buildings, infrastructure, and other man-
made structures are present. By isolating the solar potential 
from urban or built-up areas, we gain insights into the 
renewable energy potential within these developed zones.
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Table 2. The estimated solar potential value in different Tambon (sub-districts) for each month 
 

Month Tambon (sub-districts) 
Kok Pra Kan Tha Ma Ka Tha Kon Yang Na Sri Noan Kham Reang Kwao Yai Sri Suk Kud Sai Jo Kham Tao 

January 4,858,374 3,856,249 5,389,287 4,132,706 8,763,474 9,234,150 7,963,485 9,959,346 3,531,839 5,849,527 
February 4,602,430 3,650,570 5,115,315 3,913,401 8,300,136 8,742,850 7,580,775 9,429,278 3,350,135 5,556,945 

March 5,135,681 4,093,055 5,666,182 4,373,473 9,276,467 9,767,617 8,416,375 10,544,358 3,719,304 6,227,231 
April 5,427,715 4,355,682 5,979,450 4,658,422 9,836,041 10,371,284 8,876,881 11,156,749 3,904,323 6,617,802 
May 5,510,565 4,422,844 6,091,579 4,754,129 9,992,405 10,537,971 9,002,416 11,307,303 3,955,203 6,717,612 
June 5,283,319 4,256,609 5,879,730 4,592,127 9,592,252 10,156,198 8,672,466 10,830,967 3,784,039 6,458,732 
July 5,502,423 4,423,125 6,101,868 4,763,478 9,983,371 10,545,996 9,007,413 11,284,623 3,945,343 6,715,176 

August 5,553,719 4,456,822 6,119,832 4,773,375 10,064,959 10,610,957 9,071,659 11,407,574 3,990,328 6,770,550 
September 5,259,872 4,205,781 5,796,373 4,492,649 9,514,922 10,024,664 8,611,781 10,809,306 3,799,486 6,395,379 

October 5,010,679 3,980,375 5,555,397 4,261,442 9,041,021 9,522,009 8,241,241 10,274,682 3,641,706 6,058,129 
November 5,099,094 4,027,293 5,689,379 4,331,133 9,176,293 9,666,562 8,409,426 10,414,006 3,719,649 6,133,262 
December 5,016,768 3,958,647 5,609,912 4,265,799 9,029,325 9,510,340 8,279,795 10,237,174 3,662,601 6,030,664 

 
Table 3. The estimated solar potential value specifically from urban areas or built-up areas in different Tambon (sub-districts) for each month 

 

Month Tambon (sub-districts) 
Kok Pra Kan Tha Ma Ka Tha Kon Yang Na Sri Noan Kham Reang Kwao Yai Sri Suk Kud Sai Jo Kham Tao 

January 523,616 241,115 563,326 873,714 608,628 841,793 504,434 480,592 452,130 480,850 
February 445,030 208,425 484,631 751,832 524,733 723,676 433,417 416,937 386,325 414,271 

March 481,962 231,363 536,135 832,950 578,112 795,955 473,631 463,537 423,027 455,792 
April 487,583 240,483 557,777 871,337 596,047 821,299 482,659 481,739 33,850 467,710 
May 480,570 240,626 566,028 877,985 597,159 822,644 482,461 483,478 435,459 464,490 
June 383,475 190,628 422,346 719,770 462,473 645,686 347,318 369,935 335,630 353,229 
July 401,146 199,096 438,701 748,714 482,804 672,897 361,870 386,660 350,000 369,805 

August 414,115 203,812 441,250 758,765 493,559 686,527 369,641 396,817 356,651 381,861 
September 407,183 196,082 422,164 724,394 476,263 662,187 361,096 382,907 346,532 373,310 

October 404,327 188,927 411,113 697,004 463,175 644,103 359,090 370,821 341,055 367,572 
November 419,523 192,165 422,569 711,408 473,055 660,082 371,394 377,189 353,197 377,379 
December 412,842 188,474 415,163 699,463 463,541 647,894 363,658 369,064 347,649 369,619 

 
Upon analyzing the data, several observations can be 

made: 
• Variation in Solar Potential: The solar potential varies 
across different Tambon and months, focusing only on 
urban or built-up areas. For example, in Tambon Tha Kon 
yang, the solar potential ranges from 873,714 Wh/m2 in 
January to 877,985 Wh/m2 in May. This indicates that 
urban areas may have varied solar energy availability 
throughout the year. 
• Seasonal Trends: Similar to the overall solar potential, 
there is a seasonal trend in the solar potential from urban 
areas. The solar potential tends to increase from January to 
a peak in either April or May and then gradually decreases 
towards the end of the year. This trend can be observed in 
most Tambon in the Table 3. 
• Spatial Variation: The solar potential also varies spatially 
across different Tambon, focusing on urban areas. For 
instance, Tha Kon yang consistently exhibits relatively 
higher solar potential values compared to other Tambon 
throughout the year. This suggests that urban areas in 
Tambon Tha Kon yang may have favorable conditions for 
solar energy generation. 

 
4. CONCLUSIONS 

In conclusion, this study focused on estimating the 
solar potential of a given area by integrating urban land use 
data from Sentinel-1 imagery and DSM using the Solar 
Radiation tool. The results demonstrated the temporal 
differentiations in solar irradiation throughout the year and 
highlighted the influence of climatic conditions and the 
sun's location. The application of the Random Forest 

algorithm for urban land use classification proved to be 
effective, providing accurate and reliable results. The 
evaluation metrics, such as branching factor, miss factor, 
urban discovery percentage, and quality percentage, 
showcased the performance of the classification model and 
its ability to distinguish different land use categories, 
particularly urban areas. 

The estimation of solar potential maps allowed for the 
identification of areas with high solar energy potential, 
which is crucial for decision-making processes related to 
renewable energy and urban planning. The integration of 
solar potential information can aid in the selection of 
suitable sites for solar energy installations, maximizing the 
utilization of solar resources and contributing to overall 
energy sustainability goals. The study also discussed the 
challenges in calibrating atmospheric parameters and the 
importance of considering atmospheric transmission, 
elevation, slope, and orientation as key inputs in the Solar 
Radiation tool for accurate solar radiation calculations. 
Overall, the findings of this study contribute to the 
understanding of solar potential mapping and the 
application of remote sensing technology and tools for 
urban land-use analysis. The results provide valuable 
insights for policymakers, urban planners, and 
stakeholders involved in promoting renewable energy and 
sustainable development, facilitating informed decision-
making and effective utilization of solar resources. 
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