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Abstract- Compression-torsion mechanical 
metamaterials represent a significant advance in the 
conversion of axial compressive (or tensile) loads into 
rotational movements. This additional degree of freedom, 
non-existent according to linear Cauchy elasticity, is due 
to the chiral effects of the structure allowed in the context 
of Eringen micropolar continuum mechanics. The use of 
Machine Learning (ML) in microstructure design has 
revolutionized this field of research, enabling substantial 
time savings in simulation and sample experimentation.  
In the present manuscript, a twisting metamaterial 
belonging to the Z-structures and built around a unit cell 
composed of two diamond-shaped lattices has been 
studied.  In this type of metamaterial structure, the overall 
torsion is closely related to the morphology and 
dimensions of the cell, and by changing its intrinsic 
geometric parameters, a variety of eighteen thousand 
finite element models were generated. Then, using 
Machine Learning, we were able to predict the torsion 
angles of each combination, and to check the 
effectiveness of the predicted results, numerical and 
experimental approaches were combined. The error did 
not exceed 0.07% when comparing the results of the ML 
approach and those obtained using finite element 
simulations (FEM).  To validate our results, uniaxial 
mechanical compression experiments were carried out on 
specimens manufactured using the stereolithography 3D 
printing technique. The robustness of the results obtained 
paves the way for the application of these findings to 
other Z-shaped metamaterials with similar torsional 
effects. 
 
Keywords: Compression-Torsion Metamaterial, Machine 
Learning, Finite Elements Method, Predictive Modeling, 
Additive Manufacturing. 

 
1. INTRODUCTION                                                                         

Metamaterials are engineered materials with 
unconventional effective properties that may go beyond 
those of the base material [1, 2]. Mechanical 

metamaterials are one such family [3-5]. They can exhibit 
negative or zero Poisson's ratio [6], negative 
compressibility [7], excellent resistance to indentation [8] 
and compression-induced torsion [9-12]. The latter 
behavior, which consists in transforming a compressive 
or tensile axial load into a twist, has recently attracted the 
interest of many researchers, especially with the advent of 
additive manufacturing, also known as three-dimensional 
(3D) printing. The overall twist angle of the metamaterial 
structure depends on that of the unit cell and the number 
of cells assembled horizontally and vertically [13]. The 
cell itself is optimized in terms of its intrinsic geometrical 
parameters: height, side length, thickness, etc. 

It's worth pointing out that there are two types of 
approach to the study of mechanical metamaterials. The 
first, known as inverse design, consists in designing 
metamaterial structures to satisfy target properties, and 
the second in precisely determining the mechanical 
characteristics of the designed models. Due to its 
complexity, inverse design is usually supported by 
optimization methods to determine optimal design 
parameters and then evaluate them through simulations 
such as finite element analysis (FEA). This evaluation 
becomes a very slow and costly task, and could last days 
or even longer in the case of mechanical metamaterials 
due to the large number of parameters involved in the 
targeted solution, as this methodology requires all 
parameters to be updated after each response calculation. 

Lately, given the large number of factors involved and 
the complexity of resolution in terms of time, memory 
and computer speed, the use of the artificial intelligence 
(AI) approach has become a necessity, particularly for 
predicting results. The combination of AI and 
optimization for the design of mechanical metamaterials 
is in great demand in this and other areas of research. 
Chang, et al. [14] designed an auxetic metamaterial with 
zero Poisson's ratio by developing a machine learning 
(ML) model combining an artificial back-propagation 
neural network and a genetic algorithm. Adil, et al. [15] 
also used machine learning ML to predict the absorptivity 
of L-shaped metamaterials.  
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Mansouri, et al. [16] applied AI in the electrical field, 
to improve the performance of a nonlinear controller 
using the SVPWM technique. In robotics, Atify, et al. 
[17] used this approach to determine the optimal 
positions for moving a hexapod robot. This method 
requires solving a set of nonlinear equations, which is 
very time-consuming. The AI approach has overcome 
this problem. The AI approach is also applied to the 
prediction of results based on information gathered in a 
database table. Lakhdar, et al. [18] used AI to compare it 
with the finite element method in order to find the most 
suitable method for better modeling the behaviors of PVC 
bio-loaded with chicken feathers, and then predicting the 
behaviors with different percentages of bio-loading. As 
for Outemsaa, et al. [19], they compared the accuracy of 
the prediction of the roughness of a machined surface by 
artificial intelligence and by statistical model. 

In this paper the prediction of the twist angle within a 
Z-shaped unit cell of a metamaterial that comprises two 
diamond-shaped lattices is determined by the artificial 
intelligence approach based on a data table that takes into 
consideration its intrinsic characteristics. A neural 
network model is used to model the structure. A gradient 
descent algorithm is applied to determine the best 
network parameters, which minimize the errors between 
the results given by the model and the true values of the 
outputs given by the data table. The results obtained were 
confirmed by both simulations and experiments. A 
Python program was developed to generate no less than 
eighteen thousand combinations. These represent finite 
element models with a variety of geometric parameters. 
The resulting deep learning model (DL) predicts, with a 
high degree of accuracy, the torsion angle corresponding 
to a given geometric design. 

 
2. ARTIFICIAL INTELLIGENCE APPROACH  

 
2.1. Unit Cell Structure 

Our study will focus on the unit cell shown in Figure 
1, the result of a previous optimization study [20]. It 
involves the assembly of two rhombic shaped lattices by 
four identical rods inclined at an angle θ to the horizontal 
plane.  

 

 
 

 
 

Figure 1. Isometric and top views of the unit cell [20] 
 

The chiral way in which they are arranged gives the 
entire structure the ability to twist under tensile or 
compressive load. The rest of the physical and geometric 
parameters are listed in Table 1. 

 
Table 1. Physical and geometrical parameters of the unit cell 

 

a (mm) h (mm) b (mm) E (GPa) ν θ (°) α (°) 
12 24 1.5 2.61 0.4 63.44 20 

 
2.2. Machine Learning 

 
2.2.1. Dataset 

The artificial intelligence approach consists in solving 
a problem by learning (Machine learning ML), this 
learning is established by examples that are grouped 
together in a table (Dataset). This table contains as inputs 
the parameters of the problem and their corresponding 
outputs, i.e. in the database we have the parameters α, h, 
a, b and θ (inputs) and their outputs β (results that are 
known). The database must be significant to obtain good 
results. In our case, Table 2 represents a sample of the 
database applied to solve the problem. 

 
Table 2. Sample Dataset 

 

α (°) h (mm) a (mm) b (mm) θ (°) β (°/%) 
92 24 12 1.5 63.44 4.516 
40 30 12 1.5 68.20 12.320 
70 42 12 1.5 74.05 17.500 
80 50 7.5 2 81.47 0.020 
75 10 8 1 51.34 2.200 
80 41 3.1 1.5 85.68 0.001 
65 24 12 1.5 63.44 4.844 
90 24 15 3 57.99 4.123 
90 38 5 1.5 82.5 19.820 

 
2.2.2. Neural Network Model 

The learning method used for Machine Learning 
(ML) solving is the neural network. This consists in 
placing hidden layers between inputs and outputs 
containing linked neurons. Figure 2 shows an elementary 
single-neuron network with output σ defined by the 
sigmoid activation Equation (1). Whereas the 
intermediate function Z is expressed by the Equation (2). 

1( )
1 ZZ

e
σ

−
=

+
 (1) 

1 1 2 2Z X W X W b= × + × +  (2) 
where, X1 and X2 are the input parameters, W1 and W2 are 
the link weights and b are the neuron bias. 
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Figure 2. Neural network with sigmoid activation function 
 

Figure 3 displays a neural network containing two 
hidden layers and three neurons. The expression of Z3 is 
illustrated by Equation (3), such that Z1 and Z2 are given 
by Equations (4) and (5), respectively. 

3 1 31 2 32 3 Z Z W Z W b= × + × +  (3)
 

1 1 11 2 12 1  Z X W X W b= × + × +  (4)
 

2 1 21 2 22 2Z X W X W b= × + × +  (5) 
The objective of the network is to retrieve the best 

values of the weights W and the biases b that verify the 
database as much as possible, i.e., to minimize the error 
between the true values given in the table and the results 
retrieved by the neural network through the weights W 
and the biases b.

 

 
 

Figure 3. Three neurons with two hidden layers 
 

In our case, the neural network applied is illustrated in 
Figure 4, and includes 2 hidden layers in addition to the 
output layer, with 32, 16 and 1 neurons respectively. The 
network shows the five inputs (α, h, a, b and θ), and the 
output β. The activation functions used are the sigmoid 
functions for the first two hidden layers and the linear 
function for the last layer. 
 

 

 
Figure 4. Neural network diagram 

 

 
 

Figure 5. Validation performance curves 
 
In order to minimize the error between the values 

given in the table and the results given by the neural 
network, we apply the gradient descent algorithm, which 
consists of choosing random values for the parameters W 
and b, then calculating the error between the true values 

of the outputs and the results given by the neural network 
as a function of the initial values of W and b, and finally 
updating the values of the weights (W) and biases (b). 
This process is repeated until the best values for weights 
W and biases b have been determined. 

Output 
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2.3. Validation of Results 
 
2.3.1. Validation with Performance Curves 

For verification and subsequent validation of the 
applied neural network, the error is obtained from the 
performance curves shown in Figure 5. If the given error 
is acceptable, the program is validated, in which case the 
applied neural network will replace the entire data table. 
In addition, this network is used to predict results for 
inputs that are not given in the data table, this is 
prediction by Machine Learning. The performance curves 
found for our program are displayed in Figure 5. 
 
2.3.2. Test Table 

For program validation, another table is given: the test 
table. The outputs of this table are not given to the neural 
network, but are kept hidden. The program is then asked 
to find the outputs, and the total error between the 
predictions given by the neural network and the true 
values that were hidden is calculated. Table 3 lists part of 
the test table used to verify our neural network. The 
True_β column corresponds to the true values of the 
outputs that were hidden, while the Predict_β column 
represents the values of the beta angle given by the neural 
network. We deduce that the errors between the results 
predicted by the neural network and the true results are 
very acceptable indeed, and the program is therefore 
validated. 

 
Table 3. Prediction result 

 

α (°) h (mm) a (mm) b (mm) θ (°) True_β 
(°/%) 

Predict_β 
(°/%) 

69 24 12 1.5 63.44 4.724 4.722 
92 24 12 1.5 63.44 4.516 4.514 
90 24 15 2.5 57.99 4.273 4.265 
90 24 15 4.5 57.99 3.574 3.570 
90 28 15 1.5 61.82 4.532 4.532 
90 30 15 4.5 63.43 3.918 3.914 
90 32 15 3.0 64.88 4.338 4.348 
40 30 12 1.5 61.19 12.32 12.23 

 
3. NUMERICAL AND EXPERIMENTAL 

VALIDATION 
 

3.1. Simulation 
To verify the effectiveness of the predicted results, 

finite element simulations were first carried out using 
COMSOL Multiphysics software. Three models were 
chosen with the same physical characteristics of the base 
material, such as Young's modulus E =2.61 GPa and 
Poisson's ratio ν = 0.4, while the other geometric 
parameters were as follows: α =30° or 45° or 60°, a=12 
mm, h=24 mm and b=1.5 mm. 

The study focuses on the reversible elastic domain 
due to the low deformations observed. A uniaxial load is 
applied to displace the upper face of the models with a 
relative uniaxial compressive strain set at 1%, while the 
lower boundary remains stationary. Torsion angles are 
calculated at displacements in x and y directions. In order 
to guarantee the mesh-independence of the numerical 
simulations, a mesh sensitivity analysis was carried out 
beforehand.  

The deformation of an example cell with α=60° is 
shown in Figure 6. Knowing that two consecutive angles 
of a rhombus are supplementary, each specific angle α 
corresponds to another angle (π-α). Consequently, this 
doubles the number of samples, totaling six angles: 30°, 
45°, 60°, 120°, 135° and 150°. 

All the results found are listed in Table 4. Comparing 
them with the results of the Machine Learning approach, 
we find that the error is very small, of the order of 0.07% 
at most. 

 

 
 

Figure 6. Deformation image of an example cell having α =60° along  
z-direction, ε=1% 

 
Table 4. Comparison of predicted and simulated torsion angles 

 

α (°) h 
(mm) 

a 
(mm) 

b 
(mm) θ (°) Twist β by 

FEM (°/%) 
Predicted β 
twist (°/%) Error 

30 24 12 1.5 63.44 7.702 7.706 0.04% 
45 24 12 1.5 63.44 5.949 5.950 0.01% 
60 24 12 2.5 63.44 5.028 5.032 0.07% 

120 24 12 1.5 63.44 5.028 5.032 0.07% 
135 24 12 1.5 63.44 5.949 5.950 0.01% 
150 24 12 1.5 63.44 7.702 7.706 0.04% 

 
3.2. Experimentation 

The compression-torsion effect is then examined in 
more detail experimentally, in order to validate our 
numerical results and those predicted by the Machine 
Learning program. The specimens shown in Figure 7 are 
fabricated using stereo-lithographic appearance (SLA) 
technology, and the Form 2 3D printer from US 
manufacturer Formlabs was used. It is worth emphasizing 
that all unit cells are manufactured, as shown in Figures 8 
and 9, with a layer of mirror symmetry in the middle to 
avoid friction between the upper and lower faces of the 
samples with the loading platforms during compression. 
 

 
 

Figure 7. Form 2 (3D) printer and fabricated experimental samples 
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Figure 8. Fabricated experimental samples 
 

In addition to the metamaterial cells needed to 
validate the results, two standard dog-bone-shaped 
samples, in accordance with ISO527-1(2012) [21] , were 
printed simultaneously to obtain the mechanical 
properties of the UV-cured EPOXY resin. The printing 
layer thickness was 100 µm. These properties were used 
for finite element analysis of the structures. It is 
interesting to note that other constituent materials with 
wide elastic domains can be used, as their mechanical 
properties have a negligible effect on compression-
induced torsion [12], [22].  

As shown in Figures 10 and 11, all specimens are first 
pixelated by paint spraying, so that the two-dimensional 
digital image correlation (2D-DIC) technique can later be 
used for deformation measurements. Tests are carried out 
on a "Zwick Roell" tensile/compression machine with a 
load capacity of 2.5 kN. According to the above-
mentioned standard, the average values of Poisson's ratio 
and Young's modulus calculated are 0.39 and 2.58 GPa, 
respectively. The remaining specimens are then 
compressed on the same machine, applying a quasi-static 
compression displacement at a loading speed of 3 
mm/min. The lower head remains fixed. During the test, a 
digital camera (Canon EOS M6 Mark II) was aimed at 
the mirror layer to capture an image every 0.1 mm of 
longitudinal deformations and record them. Figure 11 
shows the experimental setup. 
 

 
 

(a) 
 

 
 

(b) 
 

Figure 9. Unit cell with a mirror plane, all dimensions in mm,  
a) The as-printed specimen, b) CAD model 

 

 
 

Figure 10. Uniaxial tensile testing of dog bone samples 
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Figure 11. The experimental setup 
 

The sketch in Figure 12 illustrates that, when the 
sample is twisted, point P moves towards point M. The 
distance between the center of the sample (point O) and 
point P is L, which can be calculated as a function of side 
a and angle α by Equation (6). Obviously, in our 
application, the 2D-DIC technique could not directly 
evaluate the displacement Δx. Thus, the following 
Equation (7) for the torsion angle β of the midplane 
depends only on the intrinsic cell parameters and the 
displacement Δy.  

 cos( )
2

L a α
= ×  (6) 

The twist angle β of the sample is translated into the 
rotation of point P at point M, as shown in the sketch in 
Figure 12. The twist is then calculated by Equation (7). 

180 arcsin
cos( )

2

y

a
β

α

 
 ∆ = ×   Π   × 
 

 (7)  

The values Δx and Δy represent the distances between 
point P and point M, measured along the x and y axes, 
respectively, and the side length of the rhombus 
a=12mm. A further comparison is made between the 
experimental and numerical approaches. As indicated in 
Table 5, we find that the error does not exceed 5.51%, 
which is largely acceptable and allows us to validate our 
models. 

Moreover, although we focus here on a unit cell 
composed of two rhombic-shaped lattices, the present 
approach can be extended to other Z-shaped 
metamaterials with compression-torsion effect without 
any difficulty. 

 

 
 

Figure 12. Top view sketch of twisted unit cell 
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Table 5. Comparison of experimental and numerical torsion angles 
 

α  
(°) 

h  
(mm) 

a  
(mm) 

b  
(mm) 

θ  
(°) 

Twist β by 
FEM (°/%) 

Twist β by 
EXP (°/%) Error 

30 24 12 1.5 63.44 7.702 7.3 5.51% 
45 24 12 1.5 63.44 5.949 5.7 4.37% 
60 24 12 2.5 63.44 5.028 5.3 5.12% 
120 24 12 1.5 63.44 5.028 5.3 5.12% 
135 24 12 1.5 63.44 5.949 5.7 4.37% 
150 24 12 1.5 63.44 7.702 7.3 5.51% 

 
4. CONCLUSIONS 

Chirality in elastic mechanical metamaterials 
emphasized the existence of an additional rotational 
degree of freedom induced by compression or tension. 
Lately, the combination of artificial intelligence and 
optimization in the design of microstructures for 
mechanical metamaterials is highly sought-after in this 
field of research, due to the substantial time saved in 
simulation and sample experimentation. In the present 
work, the Machine Learning approach has been used to 
predict the compression-induced torsion angles of a 
twisting metamaterial belonging to Z-structures and built 
around a unit cell composed of two diamond-shaped 
lattices.  The study is limited to the reversible elastic 
domain with a relative uniaxial compressive strain fixed 
at 1%. By varying the intrinsic geometric parameters of 
the unit cell, a Python program generated some eighteen 
thousand combinations, and the predictions given by the 
algorithm proved satisfactory. 

To verify the effectiveness of the predicted results, 
simulations were carried out on a series of numerical 
models using COMSOL Multiphysics software to study 
the influence of unit cell geometry on twist angle.   The 
error did not exceed 0.07% when comparing the results of 
the Machine Learning approach and those obtained by 
finite element simulation (FEM). Finally, to validate the 
results of our study, uniaxial compression tests were 
carried out on samples manufactured using the 3D 
stereolithography printing technique. The consistency of 
the numerical and experimental results was clearly 
demonstrated by a maximum error of 5.51%. The 
relevance of the present approach means that it can be 
applied to other Z-shaped compression-torsion 
metamaterials. 
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