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Abstract- Surface roughness Ra is an important factor in 
the manufacturing sector, this characteristic is taken into 
consideration when evaluating the quality of manufactured 
parts, but it also has significant effects on the Carbon 
Emissions CE associated with the manufacturing process, 
as noted in this article which aims to closely examine the 
relationship between surface roughness and carbon 
emissions resulting from this process. The purpose of this 
study is to achieve minimal surface roughness while at the 
same time reducing carbon emissions. based on 
experimental data (ap, f, Vc, D, Lc, Fc, Fa) made on a CNC 
machine and analytical cutting models, Ra and CE 
roughness modelling is performed by a set of artificial 
intelligence tools namely LR (Linear Regression), SVM 
(Support Vector Machine), KNN (K Nearest Neighbors), 
ANN (Artificial Neural Network), DT (Decision Tree), 
GPR (Gaussian Process Regression), GBoost (Gradient 
boosting), and ANFIS (Neuro-Fuzzy), which are 
assembled in a way to have the most accurate Ra and CE 
model. the outputs of the most accurate tools are combined 
by a MODE function, which allows selection of the 
repetitive value, followed by an optimization of cutting 
conditions ap, Vc, f to minimize surface roughness and 
Carbon Emissions is performed by intelligent algorithms 
such as GA and Particle Swarm. the optimum values of 
cutting conditions for best roughness and minimum CE are 
ap=0.20368 mm for depth of cut, a cutting speed of 
Vc=324.4422 mm/min, and a tool feed speed of f=0.08518 
mm/rev.  
 
Keywords: Surface Roughness, Carbon Emissions, 
Cutting Parameters, Turning Process, IA Tools, Intelligent 
Algorithms. 
 

1. INTRODUCTION                                                                         
Machining is an essential process in the industrial 

manufacturing sector, but it also has a considerable 
footprint in terms of carbon emissions. Carbon emissions 
from machining processes arise from the use of energy-
intensive machine tools CEelec, as well as from the 
production of raw material CEm, from production of 
cutting tools CEtool, lubricants, and coolants CEfluid. 
Additionally, machining processes can generate 

substantial amounts of waste, including metal chips CEchip 
and other materials as shown in Figure 1, which can 
contribute to environmental pollution if not properly 
disposed of. As such, reducing carbon emissions from 
machining processes is a vital step in the manufacturing 
industry's efforts to mitigate its impact on the environment. 
In this context, there has been increasing interest in the 
development of sustainable machining practices that 
reduce carbon emissions while maintaining or improving 
productivity and product quality. For this purpose, several 
studies conducted on reducing Carbon emissions in 
machining processes are made, as presented in Table 1, 
these studies use statistical or mathematical methods to 
model either roughness, machining cost, carbon emissions, 
cutting noise, or tool wear, then applying a tool to achieve 
optimal cutting conditions. 

According to these studies, the cutting factors used in 
manufacturing may affect the carbon footprint in a 
different way. As is known, metal cutting can be 
considered as the removing of material from a workpiece, 
which require machines, tools, and other equipment. 
Cutting factors which can affect carbon emissions include: 

- Cutting speed: Higher speeds mean that parts can be 
produced more rapidly, but can also result in higher energy 
consumption by the machine, which can increase carbon 
emissions [1]. 
- The cutting tool type: according to [2], using more 
efficient cutting tools can reduce the time required to 
manufacture parts and thus decrease carbon emissions. 
More efficient cutting tools can reduce the energy required 
to cut the raw material, which can also potentially reduce 
carbon emissions. 
- The workpiece material: according to [3] The cutting 
material can also affect CO2 emissions. For example, using 
a harder material may require using more power to cut, 
which can increase CO2 emissions. Carbon emissions. 

- The final part quality: to achieve a high level of quality, 
can increase energy consumed and therefore increase 
carbon released levels [4]. 

In other words, the impact of cutting parameters on 
CO2 emissions depends on the specific properties of the 
production process and the decisions made by the 
manufacturing company in terms of technology and 
environmental practices. 
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Cutting parameters that affect carbon emissions can 
also affect the quality of the workpiece, more precisely the 
roughness of surfaces according to several studies [5-7], 
for this reason, a roughness modelling will be done in 
parallel with the carbon emission modelling, in order to 
improve the cutting parameters for optimal results while 
minimizing surface roughness and the carbon emission in 
a cutting phase for a turning operation. In this paper, 
different artificial intelligence tools namely SVM, KNN, 
GBoost, GPR, Neuro-Fuzzy, and ANN, will be used for 
modelling surface roughness as well as Carbon emission, 
in order to generate the appropriate objective functions to 
be minimized. The data used in this study is generated by 
experiments [8] performed on a ROMI E280 CNC turning 
machine on specimens of AISI H13 material with a TNMG 
16 04 04-PF 4425 tool, these data are the surface 
roughness, and the cutting forces from which the carbon 
emissions are calculated. 

 

 
Figure 1. Carbon emission categories in a CNC machine-tool [13] 

 
Table 1. Published studies about the modelling of carbon emissions 

 

Ref. Cutting  
parameters 

Modelled  
output 

Modelling and 
Optimizing tools 

[9] Vc, f, ap, material E, CE, cost, Ra RSM and NSGA-II 
[10] f, ap, N CE, Ra, T RSM and NSGA-II 
[11] Vc, f, ap CE, VB NSGA-I and MOPSO 
[12] Vc, f, ap, material E, CE, cost, VB MOGA 
[13] Vc, f, ap, material E, CE, cost, VB Mathematical methods 

 
2. METHODOLOGY 

As shown in Figure 2, the working method starts with 
a collection and preparation of training data, then an 
application of artificial intelligence tools to model the 
surface roughness and carbon emissions, an application of 
an optimization algorithm on the good model found will 
allow to achieve optimal cutting parameters for a good 
surface condition and minimal carbon emissions. Before 
collecting the data, it is important to clearly define the 
objective. In this case the objective is modelling the 
Surface Roughness, and Carbon emission in cutting phase 
by AI tools, this requires training inputs and targets. The 
dataset is produced by experiments on a CNC turning 
machine and a cylindrical multi-flange workpiece, with 
cutting parameters in three levels each, as shown in Table 
2, the total factorial design gives a number of 45 
experiments, these experiments are repeated twice with 
different cutting diameters which gives a total of 90 
experiments, the surface roughness is measured 6 times in 
different angles of the machined surface, the cutting forces 

are also measured in three directions during the cutting 
process with a dynamometer.  

The Carbon emission CE during the cutting process is 
calculated from the measured data (forces, cutting 
parameters and others), details of the calculation of the 
Carbon emission will be in the following sections. The 
selection of the artificial intelligence model is based on its 
performance by taking the Mean Squared Error, and the 
regression coefficient, once it is properly selected 
objective functions are generated in order to apply an 
optimization tool on it. 

 
Table 2. Different levels of cutting settings 

 

Cutting parameters Units Levels 
Depth of cut (ap) mm [0.25;0.5;0.8] 
Cutting speed (Vc) m/min [310;350;390] 

Feed rate (f) mm/rev [0.07;0.09;0.1;0.11;0.13] 
Initial diameter (Di) mm Variable in each pass 

 
3. QUANTITATIVE MEASURES OF CARBON 

EMISSIONS CE 
As mentioned earlier, to model the surface roughness, 

and the carbon emission by AI tools as a result of cutting 
parameters, it is necessary to have the features and the 
targets data. In this case, the CO2 emissions are calculated 
using the method described below. The carbon footprint of 
a CNC machine according to C. Li [13] is a sum of the 
carbon emissions for each component associated with the 
machine as shown in Figure 1, i.e., the emissions caused 
by electricity consumption CEelec, the emissions generated 
by the tool CEtool, the emissions from lubrication CEfluid, 
the emissions produced by the raw material CEm, and those 
caused by the chip CEchip, these emissions are calculated 
by the following Equation (1). 

elec tool fluid m chipCE CE CE CE CE CE= + + + +  (1) 
  

 
 

Figure 1. The graph of the steps followed  
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Calculating the carbon emissions of a CNC machine 
involves calculating each component of Equation (1), for 
this purpose, the steps shown in Figure 3. 

 

 
 

Figure 3. Carbon Emissions calculation method 
 

3.1. Cutting Power and Electrical Energy Consumed 
The electrical energy consumed during the cutting 

phase is calculated by the Equation (2), P is the power 
needed for cutting, of which it includes the power to 
remove the material from the workpiece and the tool 
advance power.  

 

 
 

 
 

Figure 4. Cutting forces and velocity in turning process 
 

Based on Figure 4 which represents the different forces 
applied to the material and the speed of the tool relative to 
the workpiece, the power required for cutting (including 
the cutting power and the feed power) is calculated by 
Equation (3), the cutting time tc is the ratio between the 

cutting length Lc and the feed speed which is represented 
by Equation (4). 

elec c
machine

PE t
η

= ×  (2) 

c Y f ZP V F V F= × + ×  (3) 

1000
c c

c
f c

L DL
t

V V f
π

= =  (4) 

 
3.2. Calculate the Tool Life 

The life of a tool cutting edge is determined by the 
generalized Taylor Equation (5) [13], The cutting tool or 
tool inserts generally have several cutting edges, so the 
tool life of an n edge insert is calculated by Equation (6). 

0 x y z
c p

CT
V f a

=
× ×

 (5) 

0toolT n T= ×  (6) 
R. Suresh [14] modelled the tool wear for the same 

material used in the experiment with different tool 
materials (multilayer coated carbide, uncoated ceramic 
tool, and coated ceramic tool), by the RSM method, he 
found a regression model (7), that is used in our study for 
a Carbide tool by using a VBmax=0.3 mm [15]. Hence the 
duration of a cutting edge is calculated by Equation (8). 

3 3
max

2

2 6 2
0

2 3

1.847 10 0.899 10

0.207422 7.6667 10

1.6458 10 3 10

0.706 1.094 10

c

p

c

c

VB V

f a

T V

f V f

− −

−

− −

−

= × − × × +

+ × − × × +

+ × × + × × −

− × + × × ×

 (7) 

3
0

2

2 2

18.115992 5.467 10 12.603111

4.658342 1.8228217

42.897071 6.6472.10

c

p c

c

T V f

a V

f V f

−

−

= + × × − × +

+ × − × +

+ × − × ×

 (8) 

 
3.3. Calculate the Masse of Chip 

The material mass cut during a cutting time is 
calculated by equation. The mass is a result of the three 
adjustable cutting settings, the density of the material 
being cut, and the cutting time. 

chip p c cm f a V tρ= × × ×
 

(9) 
 
3.4. Calculation of Various Carbon Emitted by Cutting 
Process 

The various Carbon emissions represented by Equation 
(1) are calculated using the factors shown in Table 3. The 
quantity of carbon produced by the electricity CEelec 
depends on the total electrical energy consumed and an 
emission factor for carbon associated with the generation 
of electrical energy through the electricity production 
process. 

elec elec elecCE CEF E= ×  (10) 
The cutting tool carbon emission is determined by 

multiplying the tool carbon emission factor CEFtool, the 
tool mass, and number of consumed tools by the ratio of 
cutting time to tool life. The tool used is a 3 edges tool with 
a mass of 7g. 
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c
tool tool tool

tool

t
CE CEF m

T
= × ×

 
(11) 

According to Q. Yi [16] the carbon quantity emitted by 
the fluid is calculated by Equation (12), where, d is the oil 
concentration, Vin,, Vad, are respectively the initial quantity 
of fluid and the additional quantity in Table 4. 

[ ( ) ( )]c in ad
fluid oil in ad wat c

fluid

t V V
CE CEF V V CEF

T δ−
+

= × × + + ×  (12) 

The calculation of carbon emissions generated by the 
raw material is performed using Equation (13). The carbon 
emission factor for steel production, denoted as CEFm, is 
subject to variation due to several factors such as the 
energy source utilized during the production process, the 
efficiency of the production process, and other relevant 
variables. 

m m chipCE CEF m= ×  (13) 
The same applies to chip carbon emissions, which are 

calculated by the following Equation (14), Where, CEFchip 
and mchip are successively the chip carbon emission factor 
and the chip mass. 

chip chip chipCE CEF m= ×
 

(14) 
 

Table 3. Carbon mission factor [13] 
 

Carbon Emission Factor Values 
CEFtool 29.6 kgCO2/kg 
CEFoil 2.85 kgCO2/l 

CEFwat-c 0.2 kgCO2/l 
CEFm 2.68 kgCO2/kg 

CEFchip 0.361 kgCO2/kg 
 

The Ministry for Energy Transition and Sustainable 
Development and the International Energy Agency [17, 
18], report that, the carbon emission factor for electricity 
generation in Morocco is estimated at around 0.723 and 
0.8 kg of CO2 per kWh. It is important to note that this 
number may change as a result of the country's increasing 
efforts to implement and improve its energy strategies and 
technologies. 

 
Table 4. Fluid properties [19] 

 

Fluid Properties Values 
Initial coolant quantity 8.75 L 

Additional fluid 4.3 L 
Mean interval between each replacement 3 months 

Concentration of oil 8% 
 

Table 5. Other properties related to the tool, material, and machine 
 

Properties Values 
Tool weight 7g [20] 

Material density 7.76 kg/m3 [21] 
Machine efficiency around 80% [12] 

 
4. SURFACE ROUGHNESS AND CARBON 

EMISSION AI MODELS 
In this section, the focus is on developing a model that 

relates the cutting parameters of ap, f, and Vc to the surface 
roughness and carbon emissions in a cutting process. To 
improve the training efficiency and stability according to 
[22, 23], a data normalization technique is employed as 

shown in Figure 5. The ultimate objective of this 
modelling is to establish a function that relates the cutting 
parameters to the output variables of surface roughness 
and carbon emissions. This function can then be used to 
optimize the cutting process, with the aim of reducing 
surface roughness and carbon emissions. Overall, this 
section provides valuable insights into the development of 
a data-driven approach for optimizing cutting processes. 

 

 
 

Figure 5. Normalized data for Ra and CE 
 

The modelling will be performed using various 
artificial intelligence tools, including ANN, KNN, GPR, 
SVM, DT, GBoost, and ANFIS. These tools are designed 
to analyze the complex data sets and make predictions 
efficiently and accurately. Each tool has its own specific 
qualities and limitations, the choice of the most suitable 
tool is contingent upon the modelling task in question. The 
ultimate idea is to build a robust that can accurately predict 
the outcomes of the cutting process. The training data 
inputs comprise the cutting velocity, feed speed, and depth 
of cut, while the training data targets are the machined 
surface roughness and carbon emission. The data used for 
the Roughness and Carbon Emissions Modelling, which 
employs artificial intelligence tools, is split into three 
parts: 80% for training, 10% for testing, and 10% for 
validation, within the suite. The 8 models are trained with 
the same training data, tested with the same test data, and 
validated with the same validation data to see the ability of 
each tool to model the surface roughness and Carbon 
emissions per mm of cut in the turning operation. 

 
4.1. Backpropagation Neural Network (ANN) 

A backpropagation Neural Network is created through 
the utilization of an algorithm developed in article [24]. 
This algorithm enables the modification of 
hyperparameters through a complete factorial design, 
followed by the selection of the most effective 
hyperparameters based on the mean squared error MSE. 
The number of hidden layers, the neuron count within each 
hidden layer, the learning rate, as well as the activation 
function and training algorithm are the four key 
hyperparameters of ANN. The available options for the 
number of hidden layers are constrained to either 1 or 2, in 
order to prevent the model from becoming overly deep. 
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Meanwhile, all other parameters have four levels. On a 
logarithmic scale, the MSE for each ANN training is 
depicted in the Figures 6 and 7, for modelling Ra, the 
optimal hyperparameters are: 2 hidden layers with 10 
neurons in each layer, a learning rate of 0.02, a Logsig 
activation function and BR training algorithm. On the 
other hand, for modelling CE, the recommended 
hyperparameters are: 2 hidden layers with 12 neurons in 
each layer, a learning rate of 0.001, a tensing activation 
function and trainer as a training algorithm. 

 

 
 

Figure 6. The optimal hyperparameter configuration with a fall factorial 
design to Tuning a Ra model 

 

 
 

Figure 7. The optimal hyperparameter configuration with a fall factorial 
design to Tuning a CE model 

 
4.2. K-Nearest Neighbors 

K-Nearest Neighbors is an artificial intelligent tool for 
regression and classification problems. The aim is to 
discover the K data points closest to a given input and then 
generating predictions based on the labels of these nearest 
neighbors. The KNN algorithm's hyperparameters include 
the number K of nearest neighbors, the distance metric, 
and the weighting function. Tuning these hyperparameters 
can significantly affect the performance of the KNN 
algorithm. The optimum training hyperparameters of KNN 
models with MATLAB program using Bayesian 
Optimization function are; K neighbors equal 9 with 
“Seuclidean” distance for modelling Ra, and 3 nearest 
neighbors with a “Euclidean” distance for CE modelling. 

 
4.3. Support Vector Machine  

The Support Vector Machine is a robust artificial 
intelligence tool used for classification and regression 
analysis problems. The adjustment of SVM parameters, 

including the Epsilon parameter, the kernel function type, 
and the C coefficient of the box constraint, is important to 
obtain optimal SVM model on a particular dataset. After 
splitting the data. The Ra's SVM model underwent 30 
iterations of training with a variety of hyperparameters. 
The 15th iteration yielded the best result who gives a 
minimal mean squared error equal to 0.051339 for Ra 
model, and 7.48815 for CE model. The same set of 
hyperparameters were utilized to model carbon emission. 
The optimized hyperparameters are detailed in Table 6. 

 
Table 6. Optimized hyperparameters of the Ra and CE models 

 

Hyperparameter 
Optimized 

hyperparameters 
for Ra 

Optimized 
hyperparameters 

for Carbon Emission 
Box constraint 0.02878 1.5746 
Kernel scale 0.76464 1 

Epsilon 0.00953 0.86746 
Kernel function Gaussian Quadratic 

 
4.4. Gaussian Process Regression 

This is a probabilistic machine learning tool that can be 
applied to regression analysis, as in the present study. The 
hyperparameters of this tool comprise the Kernel function, 
the Sigma noise variance parameter, the optimizer option, 
and others. The optimization of these hyperparameters is 
crucial to ensure that GPR can accurately capture the data 
models involved and generate accurate predictions. By 
using automated hyperparameter tuning in MATLAB 
2021, the GPR model was optimized to determine the 
optimal hyperparameters for training. The optimized 
hyperparameters for Ra were kernel function set to 
'SquaredExponential', optimizer option set to 
'quasinewton', and sigma set to 0.11199. For CE, the 
optimized hyperparameters were kernel function set to 
'Noninotropic Exponential', optimizer option set to 
'quasinewton', and sigma set to 90.0801. 

 
4.5. Decision Trees DT 

DT is a tool used in machine learning for both 
classification and regression applications. They are widely 
used for decision-making in many fields, including data 
science, artificial intelligence, and data analysis. The most 
significant hyperparameters of a decision tree are the 
maximum depth of the tree, the minimum number of 
samples required to split an internal node and the splitting 
criterion. These hyperparameters have a considerable 
effect on the tree's efficiency and the potential for 
overfitting. using a Bayesian optimization in range 1 to 
168 of leaf size. After conducting hyperparameter 
optimization, the appropriate parameters for the decision 
tree have been identified. For CE, the optimized minimum 
leaf size is 2, while for Ra, the optimized minimum leaf 
size is 3. 

 
4.6. Gradient Boosting (GBoost) 

GBoost is identical to random forests, both being 
ensemble methods that use multiple decision trees to 
increase the accuracy of predictions. The main differences 
between random forests and gradient boosting are as 
follows: Random forests construct multiple trees in an 
independent manner, whereas gradient boosting constructs 
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trees sequentially, and random forests take the mean of the 
tree’s predictions, whereas gradient boosting sums the 
predictions. Both methods are in general use and have their 
advantages and disadvantages. The choice between the 
two depends on the specific problem and the data 
available. The optimized hyperparameters for CE and Ra 
have been identified as follows: 
- For Ra, the minimal size of the leaf is 1, the learners are 
60, the rate of training is 0.21938, the predictors are 3 and 
the ensemble method is LSBoost. 
- For CE, the minimal size of the leaf is 10, the learners are 
78, the rate of training is 0.076428, the predictors are 3 and 
the ensemble method is LSBoost. 
 
4.7. Neuro-Fuzzy 

Neuro-fuzzy is a hybrid computing technique that 
integrates a fuzzy logic and artificial neural networks to 
create a more powerful and accurate model of a complex 
problem. To tune a neuro-fuzzy system for regression, the 
appropriate input and output variables need to be identified 
and converted into fuzzy sets. Next, the fuzzy rules that 
describe the input-output relationships must be defined 
and the system must be trained by optimizing its 
parameters using a training algorithm. The performance of 
the system should then be evaluated using a validation 
dataset and the parameters refined if necessary. A neuro-
fuzzy model can be effectively tuned using a genetic 
algorithm, as stated in reference [25]. Additionally, there 
is another optimization technique called particle swarm 
optimization (PSO) that can also employed to adjust the 
hyperparameters of a neuro-fuzzy model, as mentioned in 
reference [26]. These hyperparameter tuning algorithms 
are very slow in this case of study, The current study 
employs ‘ANFIS’ method for hyperparameter tuning. 

 
4.8. Linear Regression LR 

Linear regression is also used with its four types, 
namely, Linear, Linear Interaction, Robust Linear, and 
Stepwise Linear. It is found that Linear interaction is the 
most accurate in this case of study for roughness 
modelling, and Stepwise Linear the most efficient for CE 
modelling. 

 

 

 
 

Figure 8. Ra Models’ regression (training and validation) 
 

 
 

Figure 9. The MSE of Ra model 
 

 
Figure 10. The MSE of EC model 
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Figure 11. CE Models’ regression (training and validation) 

 
4.9. Ensemble Models 

In this part, an assembly of the models (Figure 12) is 
done in a way to have a more accurate ensemble for 
predicting the surface roughness, also the quantity of 
carbon emitted per mm of cut. Several tests are made to 
aggregate the five most accurate models in order to 
generate an output (Ra, and CE) with a good accuracy, 
using the functions such as; average of the outputs, the max 
or min of the models outputs, the MODE function which 
allows to return the most frequent or repetitive value, the 
median, the average of the k max (k=4), and the average of 
the k min (k=4), the results of MSE and the regression 
coefficient of the aggregate are represented in Figure 13. 

According to Figures 13 and 14, it is noticed, that the 
aggregation of the models with a MODE function gives a 
minimal MSE whether it is for training, testing, and 
validation (The mode function allows to choose the most 
repetitive output). 

 
 

 
 

Figure 12. Ensemble of models 
 

 
Figure 2. a) MSE for different assembly functions, b) Regression coefficient 

 

 
 

Figure 14. CE / MSE for the different assembly functions 
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5. CUTTING PARAMETERS OPTIMIZATION 
In the manufacturing of precision workpieces, the 

surface roughness is potentially the most significant 
parameter to be minimized. By means of the artificial 
model of CE and Ra constructed in the previous sections. 
A random generation of 1000 inputs are done and then fed 
back into the constructed artificial model which will 
generate outputs Ra, and CE, the aim is to examine the 
influence of the three cutting parameters on surface 
roughness, and the quantity of carbon released into the 
environment. The most important parameter affecting 
roughness is the feed rate f according to several studies [27, 
28], a minimum feed rate gives a minimum roughness, in 
this study scenario the carbon emissions are also affected 
by the feed per revolution as shown in Figure 15, 
increasing f provides less Carbon contrary to the roughness 
of the surface. Figure 16 shows the surface roughness 
versus the carbon emissions, it is clear that an 
improvement in the precision of the machined surface will 
increase carbon emissions in the same way. 
 

 
 

Figure 15. Cutting parameters effect on CE 
 

The cutting conditions are optimized to minimize 
carbon emissions and machined surface roughness using 
the most accurate artificial model of Ra and CE as 
objective functions. After saving the five most accurate 
models as functions and coupling them by a MODE 
function, that equation becomes the objective function to 
be optimized using MOGA and PSO optimization tools. 
 

 
 

Figure 16. Ra according to CE 

In this optimization section, two algorithms are used 
separately to validate the best cutting conditions for 
minimizing carbon emissions and machined surface 
roughness: the first is the GA genetic algorithm that has 
been used to optimize the Ra functions generated by the 
neural network, as was done in our last study [22, 29], the 
second is the PSO Particle Swarm optimization. 
Optimization of cutting parameters by MOGA under 
optimal options, results several solutions, represented by 
Pareto front (Figure 17). the smoothest surface finish has a 
roughness of 0.3947 µm with the following cutting 
conditions: ap=0.2146 mm, Vc= 333.8326mm/min, and 
f=0.0882 mm/rev. The CE is minimum (CEmin=77.1643 
µg/mm) under cutting conditions; ap=0.2mm, Vc= 310 
mm/min, and f=0.07 mm/rev. From the Pareto front shown 
in Figure 17, it is perfectly understandable that the surface 
roughness and carbon emissions are functions of inverse 
variation. 

 

 
 

Figure 17. Pareto front (minimum points) 
 

Particle Swarm Optimization (PSO) is an optimization 
algorithm that uses the collective intelligence of a group of 
particles to find the optimal solution. It is similar to the 
way birds flock and fish school together and works by 
refreshing the particle location and speed to the best 
solution found so far by any particle in the swarm. PSO is 
simple to implement, computationally efficient and 
effective for solving optimization problems in various 
fields such as finance, engineering, and data science. It has 
been shown to perform well for problems with many 
variables and non-linear search spaces. After setting 
bounds of the 3 variables (ap, Vc, f), and choosing options 
in MATLAB using a function called; particleswarm. By 
using this intelligent tool, the minimum of surface 
roughness Ra=0.478 mm and CE=80.7197 mg/mm, for the 
optimal parameters following, ap=0.20368 mm, 
Vc=324.4422 mm/min, and f=0.08518 mm/rev. The 
optimization result is almost the same as the result found 
by the GA. 

 
6. CONCLUSION  

In this paper, the surface roughness of a CNC turning 
machine and the quantity of carbon emitted by each 
millimeter of machining are modelled by several artificial 
intelligence tools, followed by a coupling of the 5 most 
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highly accurate AI tools (ANN, GPR, DT, GBoost, and 
ANFIS) by a MODE function (is used to select the 
repeating value) to achieve the most accurate model, which 
is then used to optimize the three cutting factors; Cutting 
speed, feed rate per tool revolution, and depth of cut. The 
Multi-Objective Genetic Algorithm, and Particleswarm 
algorithm are used to optimize the cutting conditions to 
minimize machined surface roughness and carbon 
emission per millimeter of cut, the optimum cutting 
conditions to achieve a minimum of objective functions 
(Ra and CE) are then: ap=0.20368 m, Vc=324.4422 
mm/min, and f=0.08518 mm/rev. Ultimately, this study 
shows the importance of taking surface roughness into 
account as a key parameter for the search of more 
sustainable solutions in the turning machining field. 
Efficient monitoring of surface roughness can not only 
improve product quality, but also help to reduce the 
industry's carbon footprint. 
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