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Abstract- This research introduces an advanced approach 
aimed at improving the precision and efficiency of wind 
energy forecasting while mitigating the detrimental 
impacts of wind energy fluctuations on electrical system 
performance. The methodology involves a two-step 
modeling process, initially constructing a model based on 
the wind power curve to predict variations using 
fundamental physical principles. To address inaccuracies, 
a data-driven corrective strategy is implemented, 
employing data mining techniques for analysis and 
rectification. The amalgamation of outcomes from both 
phases significantly enhances the accuracy of wind energy 
predictions. Our proposed strategy outperforms 
conventional models in terms of both accuracy and cost-
effectiveness, representing a significant advancement 
beyond basic physical and statistical models. This 
assertion is substantiated by a comprehensive analysis of 
authentic wind farm data. The comparative study 
underscores that our approach not only surpasses existing 
models but also offers a more economically viable solution 
for wind energy forecasting, marking a notable leap 
forward in the field. The findings emphasize the practical 
utility of our approach in optimizing the integration of 
wind energy into electrical systems, thereby fostering 
sustainable and reliable energy generation. 
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1. INTRODUCTION                                                                         

Renewable energy, including wind energy, has gained 
global prominence as a solution to combat fossil fuel 
dependence and environmental pollution. However, the 
variable and stochastic nature of wind poses challenges to 
power system stability, especially given its significant 
contribution to power generation in regions with ample 
wind resources. Current approaches to wind energy 
forecasting include physical models based on numerical 
weather prediction (NWP) and statistical models such as 
parametric and non-parametric models [1, 2]. Physical 
models are good at capturing long-term trends but lack 
local accuracy and can be time-consuming.  

Conversely, models employing statistical approaches, 
including time series models, support vector machine 
(SVM) models, neural networks (NN) models, and others, 
rely on large amounts of data for training but offer better 
short-term forecasting capabilities. Some studies have 
proposed improved models by incorporating advanced 
techniques such as wavelet networks or kernel functions 
into SVM algorithms [3]. Overall, statistical models show 
promise in short-term wind energy forecasting. precision. 
However, as the forecast horizon lengthens, error levels 
tend to increase.  

To address this, innovative approaches such as hybrid 
models have been suggested to enhance the accuracy of 
wind power predictions [4]. These hybrid models combine 
physical models for long-term trend prediction with 
statistical models for local forecast accuracy improvement, 
making them more applicable in practical situations. 
However, the combination of two models may also 
increase the time required for wind power forecasting. 
Accurate wind power forecasts are crucial for system 
operators to mitigate negative impacts. Therefore, the 
main objective of this study is to devise a wind power 
forecast system that is highly efficient and effective. To 
achieve this goal, we have proposed a novel approach that 
integrates the main wind power prediction with error 
correction using a model that incorporates accuracy 
techniques.  

The first step in our methodology involves using 
information on the site to establish an adequate model, 
which serves as the foundation for the primary wind power 
forecast. This approach provides advantages in capturing 
the wind power trend from wind speed variations and 
requires less computation time compared to conventional 
numerical weather prediction (NWP) approaches [5, 6]. 
Secondly, an error correction model is presented to 
enhance the precision of wind power forecasts. by 
examining the faults of the primary model and assimilating 
the advantageous features of data-driven models, this 
model is capable of enhancing its predictive capabilities. 
This approach involves analyzing the limitations of the 
existing model and leveraging the strengths of data-driven 
models to improve its overall performance.  
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Essentially, the model incorporates the benefits of 
data-driven modeling techniques to address the 
shortcomings of the original model., ensuring accurate 
mistake correction [7]. Ultimately, the wind power 
forecast is obtained by combining the findings of the core 
model with the error correction. Compared to conventional 
physical models, the suggested method provides higher 
precision due to error correction, The model is better at 
representing wind power production trends than statistical 
models, as it can capture the nuances and complex 
dynamics of wind power generation more accurately. It 
outperforms traditional statistical models in accurately 
depicting real-world production trends [8, 9]. 
      The suggested approach blends the advantages of 
physical and data-driven models, and its performance is 
meticulously evaluated using the parameters of the study 
site. In order to control the reliability of the approach, 
many simulations were carried out is calculated based on 
the findings [10], which demonstrate the high efficiency 
and accuracy of the suggested method in wind power 
prediction. The paper provides a detailed account of the 
method, from the central concept to the specific procedures 
and modeling of the wind power curve. Furthermore, the 
study thoroughly analyzes the prediction errors of the 
initial model, leading to the development of an error 
correction Built upon this dataset. 
       The wind energy profile is employed to represent the 
connection between wind speed and power output in the 
initial model. The inaccuracies in predictions of the initial 
model are then analyzed to identify any discrepancies 
between the predicted and actual wind power data [11]. 
Based on this analysis, a model for correcting errors is built 
to correct the prediction errors and improve the accuracy 
of the wind power estimation. The paper begins by 
presenting the details of the strategy and elaborating on the 
essential steps. the curve below and its application in 
estimating wind power are also explicated. Additionally, 
the initial model's prediction errors are thoroughly 
examined, and an error correction model is developed 
derived from these observations. Primary issues are 
studied in this paper. In particular, we perform nonlinear 
modeling and analysis, controllers design, and validate the 
theoretical results [1]. 

 
2. APPROACH AND ANALYSIS OF DATA 

 
2.1. Modeling of Energy  

The curve in Figure 1 represents the output power as a 
function of speed. The curve highlights three phases: at c, 
designates the engagement speed; in r, denotes the nominal 
speed; and at f, indicating the cut-off speed. The system 
does not work If the wind speed is below vc or exceeds vf. 
Similarly, when v falls within the range of vr and vf, the 
wind turbines maintain a consistent output power. 
      Equation (1) is used to calculate the power generated 
by wind turbines as long as v is between vc and vf. 
To analyze energy generation, considering the impact on 
adjacent turbines, it is essential to evaluate the 
performance of individual turbines. A prior investigation 
[12] examined diverse techniques for estimating the 
energy output. 

 
 

Figure 1. Variation in motor wind energy power 
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Many previous works have assumed a CEF of 40% in 

their analysis of wind power generation in the presence of 
wake effects. The total power was calculated based on this 
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In order to help optimize the wind farm under study, 
the Cartesian coordinates (x, y) of the wind turbines, the 
inter-turbine distances, and the comprehensive, which 
takes into account superimposed spaces, are provided. The 
total decrease in velocity is described in [14, 15]. 
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Equation (5) expresses the power generation of a wind 
turbine. A and P give respectively the power and the air 
generated by the blades whereas Cp and V is respectively 
expressing the power factor and the speed. to predict the 
power output of wind turbines [13, 6]. 
 
2.2. Methodology 
     The logistic function curve, expressed as                        
g(x) = 1/(1+e(-x)), is displayed in Figure 3. Given its 
resemblance in trend to Figure 2, the previously specified 
function was employed to align with the curve in Figure 2 
[15, 16]. The resulting wind power curve model, as shown 
in Table I may serve as the primary forecasting model. 

The proposed wind power prediction approach, as 
depicted in Figure 2, whose objective is to improve the 
precision of error correction wind forecasts. The approach 
comprises two primary components: data modeling and 
data rectification. Initially, previous wind data, such as 
wind energy and velocity, is used to model the wind power 
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curve, which facilitates wind power forecasting. Model 1 
utilizes the supplied wind speed to predict wind power, and 
errors of prediction are calculated by estimate the wind 
prediction with prior wind measures. Subsequently, 
rectification error prediction model is developed by 
choosing appropriate factors and AI algorithms based on 
the error analysis. Combining the results of both models in 
a more precise wind energy forecast. The proposed 
methodology is subjected to review and discussion. 

 

 
 

Figure 2. Sample caption for a graphical representation 
 

The plot of the logistic function, represented 
previously in Figure 3 [16]. It is observed that a specific 
segment of the plot of the curve described above presents 
a function similar to the function studied. To adapt the 
wind power curve to this model, they chose to use the 
logistic function as a mathematical [17, 18] model. As in 
(6), wind power curve model derived from this approach 
could be considered as accurate estimation model.  
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where, v is wind speed, vout is cut out speed, ε is model's 
stochastic variability and coefficients a, b, and k are 
mutually independent. 
 

 
 

Figure 3. Representation of logistic function 
 

3. ADJUSTMENT OF WIND ENERGY VALUES 
ACCORDING TO THE DEVIATIONS OBSERVED 

IN MODEL 2 
 

3.1. Assessment of Inaccuracies 
The forecast results from the curve in Figure 5 

demonstrate a disparity among the predicted and actual 
values. there are marked inaccuracies within a specific 
time frame. While Model 1 relies on the wind power curve, 
its projections be able successfully capture the model of 
power. However, examining only the wind power curve 
does not identify the unpredictable and variable aspects of 
wind energy [19, 20]. Therefore, a rectification of defects 
technique is established to develop the reliability of the 
projections. The inaccuracies of a prediction model are 
calculated according to Equation (7) in the suggested 
method. 

ˆn n ne p p= −  (7) 
Equation (6) establishes that the projected error (en) is 

derived from the observed np  and projected ˆnp  wind 
power generation values. The errors in forecasting are also 
time-dependent due to the nature of wind power data. The 
significance of prior data in time series prediction is widely 
acknowledged in existing literature [21, 22]. 
Consequently, we have leveraged this idea to compute the 
historical parameter values in our time series forecasting 
model [23], as presented in Equation (8). 
( ) ( ) ( ) ( )( )ˆ , 2 ,...,y t f y t T y t T y t nT= − − −  (8) 

The error correction model includes the predicted 
quantity ( )ŷ t  and the nth quantity noticed ( )y t nT− , 
where T is the estimate margin of the elaborated data. The 
output of the results of error model is represented by  
The value e(t) is associated with the correction curve f, 
representing the updated prediction in Model 2 which is 
the corrective model, takes into consideration the number 
of data collected, wind turbine speed and power as 
reflected in Equation (9). 
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The variables l , m , and n denote the quantity of past 
values employed for prediction, errors are denoted ( )e t , 

while speed-related information is indicated by ( )v t , ( )p t
it’s the wind power information. The outcome of the error 
correction model is reflected by the error ( )e t . 
 
3.2. Examining Gasiri Wind Farm: A Case Study 

Prediction and modeling techniques developed in this 
study can be exploited to analyze site of wind farm, which 
is situated Jeju Island, South Korea. 

The logistic function's adjustment parameters, obtained 
by minimizing the sum of squares error, are presented in 
Table 1. The first model studied forecasting is constructed 
by taking the average of the functions analyzed in the 
previous sections. 
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Table 1. The four stages in estimating parameters for a logistic function 
 

  k a b 
phase11 190 0.3985 3.9531 
phase1 2 190 0.5385 3.6255 
phase1 3 190 0.3985 3.7129 
phase1 4 190 0.3165 3.7131 

 
3.3. Results and Discussion 

Figure 4 presents the results of analysis of errors, 
showcasing the accurate forecasts of model 1 for the 
projected periods p1, p2, and p3 using data mining 
techniques. The wind power forecast based on wind power 
curve models demonstrates that the predicted values 
follow the overall trend of the measured values. Notably, 
a significant disparity between the measured and predicted 
parameters is observed. 

 

 
 

Figure 4. Power generation by implementing Model 1 
 

This emphasizes the efficacy of the second phase of our 
approach, which aims to decrease the errors in forecasting. 
After examining, a minor variation can be observed among 
the projected values and the observed values. It is apparent 
that the disparity in projections increases from period p2 
to p4, Figure 5 indicating that our model has effectively 
corrected the inaccuracies. 

 
 

Figure 5. Forecasting errors using neural network algorithms 
 

Moreover, our model requires some response time to 
gather sufficient data and produce precise outcomes. 

 

Table 2. Power prediction results 
 

 MAE RMSE BIAS  
Model2 11.526 16.547 0.003  

NN 15.2547 36.445 0.075  
Model1 16.577 35.154 -19.55  

 
The data for wind energy error metrics is presented in 

Table 2. The table provides information on the various 
measurements of discrepancies in wind power. prediction 
achieved by our suggested models, comprising of Model 1 
and data mining methods for direct wind energy 
forecasting. Among the standard data-based models, it is 
evident that the neural network (NN) model delivers the 
best performance, exhibiting the lowest error rates in wind 
generation prediction. This underscores the effectiveness 
of NN algorithms in reducing the inaccuracies in 
forecasting.  

 

 
 

Figure 6. Power generation by implementing Model 2 
 

The results displayed in Figure 6 provide a comparison 
of the wake losses in two models that were examined, 
clearly indicating that Model 2 effectively minimizes the 
wake losses. This improvement validates the necessity of 
a correction algorithm to rectify the forecasting errors. The 
decision that was taken will make it possible to identify the 
most efficient layout of the wind farm studied. With this 
determination, it will be possible to optimize the 
performance and output of the wind farm., while ensuring 
a balance between maximum energy output and minimal 
wake losses. Additionally, conventional techniques can be 
employed to further improve the forecasting accuracy and 
achieve the best possible results. 
 

4. CONCLUSIONS 
This research has successfully introduced a novel and 

advanced technique for improving the precision and 
effectiveness of wind power generation forecasting. The 
two-tiered approach, consisting of Model 1 and Model 2, 
demonstrates a significant leap forward in the field. Model 
1, employing a logistic function-based analysis of the wind 
power curve, serves as the foundational element of the 
proposed technique. Its ability to discern the shape of the 
curve provides valuable insights, but recognizing its 
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limitations, the study introduces Model 2 to address and 
correct these shortcomings. Model 2 employs data-driven 
approaches, incorporating correlational examination and 
meticulous factor selection to optimize its performance. 
The synergy of these two models results in a hybrid 
approach that not only overcomes the limitations of 
individual models but also significantly enhances the 
overall accuracy of wind energy predictions.  

The improvements, as indicated by error metrics, range 
from a notable 35% to an impressive 73% when compared 
to existing models. This substantiates the effectiveness of 
the proposed hybrid model in providing more reliable and 
precise wind power forecasts. Looking ahead, the 
proposed hybrid model will undergo further validation in 
subsequent research, ensuring its robustness and 
applicability across diverse wind power scenarios. The aim 
is to establish its superiority over existing models 
documented in the relevant literature, thereby solidifying 
its position as a pioneering solution in the realm of wind 
power forecasting. In summary, this research not only 
contributes a state-of-the-art forecasting technique but also 
sets the stage for continued advancements in the field of 
renewable energy. The proposed hybrid model showcases 
a promising trajectory for enhancing the efficiency of wind 
power generation forecasting, thereby playing a pivotal 
role in the sustainable development of clean energy 
sources. 
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