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Abstract- The SSS (stress-strain state) of elastic 
multilayer composite cylindrical shells reinforced with 
ribs is studied. A longitudinal impulse load acts on the 
shell. A refined mathematical model of nonstationary 
dynamic processes and a method for calculating the 
dynamic deformation of the shell system in the process of 
non-stationary vibrations are developed on the basis of a 
geometrically nonlinear theory of shells and rods, taking 
into account transverse shears and normal deformations. 
The mathematical model is a system of nonlinear partial 
differential equations of hyperbolic type. The problem is 
solved by the finite difference method. The results of a 
numerical study of vibrations and dynamic deformation of 
discretely reinforced shells with an inhomogeneous 
structure and initial shape imperfections are presented. The 
analysis of the adequacy of the proposed solution method 
and the reliability of the results obtained is carried out. The 
influence of reinforcing ribs, material structure and shape 
errors of the outer surface in the form of initial deflections 
on dynamic stability is considered. A criterion for the 
dynamic stability of shells under impulse loads is 
formulated. The analysis of numerical results of solving 
specific problems has shown that the use of the criterion of 
loss of stability from the condition of occurrence of plastic 
deformations in comparison with the application of the 
criterion of the condition of the onset of a sharp increase 
in deflection leads to qualitatively different results. The 
problem under consideration is an important scientific 
problem of structural mechanics, namely, increasing the 
bearing capacity of complex shell structures and are of 
great scientific and practical importance.    
 
Keywords: Cylindrical Shell, Composite Materials, 
Reinforcing Ribs, Nonlinear Deformation, Dynamic 
Stability, Impulse Loads, Mathematical Models, 
Numerical Methods. 

 
1. INTRODUCTION                                                                         

Multilayer thin shells made of composite materials 
reinforced by ribs are complex inhomogeneous elastic 
structural elements that are used in modern technology. 

The teness of the reinforcing ribs and the structure of the 
material, has a particularly strong effect on non-stationary 
vibrations under the action of impulsed loads. With such 
dynamic load large surface deflections occur in a 
structurally inhomogeneous shell, there is a significant 
redistribution of deformation and stress fields and loss of 
structural stability. This leads to the need to apply the wave 
theory of shells, which more adequately reflects the 
distribution of deformation and stress fields over the 
thickness of the object under study. Thus, when solving 
dynamic problems, along with classical ones, refined 
solution methods based on a geometrically nonlinear 
model are used, taking into account shear deformations 
and inertia of rotation of a normal element. 

Thus, when solving nonstationary dynamic problems, 
it is necessary to use refined computational models and 
solution methods based on a geometrically nonlinear 
model that takes into account shear deformations and 
inertia of rotation of a normal element. The advantage of 
the vibration equations obtained on their basis is that they 
are hyperbolic type equations. Such equations can be used 
to describe the processes of wave propagation and the 
features of deformation in a thin-walled reinforced shell 
and its individual layers under the action of impulsed 
loads. 

When considering the processes of contact interaction 
in problems of dynamics, the wave equations more 
adequately describe the behavior of structures with spatial 
discontinuities on the contact surfaces of the constituent 
layers and ribs. The analysis of the papers devoted to this 
problem shows that the wave processes are most deeply 
studied for elastic smooth isotropic shells. At the same 
time, complex inhomogeneous structures with inclusions 
of various stiffness in the form of multilayering, 
reinforcing ribs and composite materials are widely used 
in practice. From the review papers [1-13] and the results 
of theoretical and experimental studies [4, 7, 12, 14-27], 
[31] for inhomogeneous composite shells it follows that 
the problem of their dynamic stability and strength under 
the action of impulse loads is currently insufficiently 
studied.  

http://www.dnu.dp.ua/eng
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Also, insufficient attention is paid to the influence of 
the initial imperfections of the geometric shape of the shell 
in the SSS analysis. This makes it necessary to clarify the 
applied calculation models. Thus, the development of 
refined calculation methods and the study of non-
stationary vibrations and dynamic deformation of 
multilayer structurally inhomogeneous shells under 
impulsed loading is an urgent research problem. 

In the refined model, the vibration equations of 
discretely reinforced shells, taking into account the 
discrete location of the reinforcing ribs, represent a system 
of hyperbolic equations with terms that contain derivatives 
in spatial coordinates no higher than the second order and 
discontinuous coefficients in the form of Dirac delta 
functions. They make it possible to study wave processes 
more correctly in the presence of spatial discontinuities. 
To solve them, it is convenient to use the integro-
interpolation method of constructing difference schemes 
proposed in [29, 30]. 

It should be noted that there is still no single approach 
to choosing the criterion of dynamic stability of the 
structure. A limiting displacement equal to one or two shell 
thicknesses, used in [12], is usually used as a stability 
criterion for smooth shells. However, this criterion does 
not reflect the potential capabilities of the structure and 
may be very far from the appropriate exhaustion of its 
stability. As a rule, the general loss of stability of the 
ribbed shell under dynamic loading is preceded by a local 
loss of its stability between the ribs [13], and the general 
case of deformation is realized only with very small 
bending stiffness of the reinforcing ribs. Therefore, this 
issue requires further research, which will expand the 
scope of applicability of the design scheme in a wider 
range of geometric, structural and physico-mechanical 
design parameters. 

The purpose of this work is to construct a refined 
mathematical model of dynamic deformation and to study 
the effect of longitudinal impulse loading on vibrations, 
SSS and the correspondence of a small deformation to a 
small change in force of composite cylindrical shells with 
structural inhomogeneities 
 

2. PROBLEM STATEMENT 
The shell is considered as an elastic inhomogeneous 

mechanical system consisting of external load-bearing 
layers and an inner layer of composite materials. From the 
outside, it is reinforced with longitudinal and transverse 
ribs, taking into account the discrete placement. Figure 1 
shows the calculation scheme of the problem. The SSS of 
the shell and reinforcing ribs is determined on the basis of 
the geometrically nonlinear theory of one-dimensional and 
two-dimensional thin bodies, taking into account 
transverse shear deformations [25]. In this case, the 
physical relations of composite layers are formulated on 
the basis of the the famous Hooke's law for orthotropic 
material using independent hypotheses of the applied 
theory of shells for each layer. The applied coordinates x  
and y  are related to the curved coordinate system by the 
dependencies 1 xα =  and 2 /y Rα = , where R  is the 
radius of the shell. 

The problem of vibrations that change over time and 
dynamic deformation of the shell structure under 
longitudinal impulse loading is solved by the finite 

difference method. The deformed state of the mating layers 
is determined through the components of the generalized 
displacement vector of the shell 1 2 3 1 2( , , , , )U = u u u ϕ ϕ , 
and deformations of the reinforcing ribs are determined 
through the components of similar generalized vectors iU  
and jU  displacements of the centers of their cross 
sections.  
 

 
 

 
 

Figure 1. a) The design scheme of an inhomogeneous shell structure,  
b) Its coordinate system 

 
The deviation of the shape of the median surface from 

the nominal one is given by the field of normal 
displacements w0= w0(x, y). For this reason the initial 
parameter (deformations) of the shell 0 0
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12 ,ε 0 0

13 23,ε ε  
are determined through the initial dents w0. It is assumed 
that the initial imperfections are purely flexural in nature. 
The components of deformations of the shell and ribs with 
initial deflections are determined by the dependencies: 
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where, , jR R  are the radii radii of the shell and 

circumferential ribs; 1 2,i jz z  are the eccentricities of the 

ribs; h  is the thickness of the coating; 1 2,ϕ ϕ  are the 
angles of rotation of the normal to the surface of the shell 
relative to the coordinate axes.  

 
3. METHOD FOR SOLUTION 

The vibration equations of a discretely reinforced shell, 
taking into account the contact conditions of the ribs, are 
represented as: 
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The forces and bending moments acting in the shell and 
ribs are expressed through deformations by dependencies: 
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where, 2 2 2
1 2, ,i jk k k  are the coefficients that take into 

account the shift by thickness; 
1 2 12 13 23 12 21, , , , , , ,E E G G G ν ν ρ  are the mechanical 

characteristics and density of the shell material; 
1 2 kp1 kp2 1 2, , , , ,i j i j i jI I I I F F are the moments of inertia and 

the cross–sectional areas of the ribs; 1 2,i jρ ρ is the density 

of the rib material; 1 2, , ,i jz z I J  are the ribs eccentricity 

and number; 1 2 3 1 2, , , ,P P P m m  are the the intensity of the 
external forces and bending moments acting on the 
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structure; ,j ix y  are the coordinate axes of the reinforcing 

ribs; δ is the Dirac's unit impulse function. The system of 
Equation (2) is supplemented by the given boundary and 
initial conditions of the problem.  

We assume that the initial dents of the shell do not 
cause initial stresses. Therefore, at the moment of time t=0, 
under the initial conditions of displacement and the 
absence of external influences on the shell, all stresses 
should be zero. In this case, the equilibrium equations are 
satisfied identically. The resulting mathematical structure 
of the process of unsteady oscillations is represented by a 
system of differential Equations (1)-(3) of hyperbolic type. 
The main feature of these equations is geometric 
nonlinearity and the presence of discontinuous coefficients 
along spatial coordinates. This is due to the discreteness of 
the arrangement of the longitudinal and transverse 
reinforcing ribs and their variable stiffness of the 
spasmodic character. 

The numerical solution method is based on a finite-
difference approximation of the vibration Equation (2) by 
spatial coordinates using an explicit difference scheme of 
integration in time coordinate [14, 28, 29]. This imposes 
certain restrictions on the construction of the difference 
grid [30]. Therefore, the solution is sought on a smooth 
surface between the ribs of the region and on the lines of 
spatial discontinuities. In matrix-vector form, the 
difference equations are represented by the dependence 

[ ] [ ] ( )
2

2
UC U M P t
t

∂
− =

∂
 (4) 

where, [ ]M  and [ ]C   are the mass and stiffness matrices 

of a discrete difference system of Equation (4); U  and  
( )P t  are the generalized displacement and axial load 

vectors. The applied explicit finite difference scheme leads 
to a limitation of the discrete time step of the difference 
grid. 

The condition for the dynamic strength and stability of 
the shell structure is the criterion of material fluidity [4]. It 
was obtained using the theory of small elastic-plastic 
deformations of Mises [23] and is characterized by the 
intensity of stresses σi at the time of the appearance of 
plastic deformations and differs from the alternative 
criterion, which is associated with the limiting value of the 
transverse deflection of the structure [12]. For an elastic-
plastic material, the condition for the occurrence of plastic 
deformations is i Tσ σ≥ . Here Tσ  is the yield strength of 
the material under one-dimensional strain of tension-
compression. The intensity of stresses in the shell is 
determined by the dependence [23]: 

2 2 2 2 2
11 22 11 22 12 13 23σ σ σ σ 3(σ σ σ )iσ = + − + + +  

where, 11 22 12 13 23, , , ,σ σ σ σ σ  are the components of the 
stress tensor of the constituent layers of the shell. To 
substantiate the reliability of the solutions obtained, the 
calculation results were compared with experimental data 
[16] and a numerical study of the convergence of the 
computational process for the problem under consideration 
was performed. 

4. ANALYSIS OF NUMERICAL RESULTS 
The effect of the axial edge load 1( , )P y t  on a three-

layer cylindrical shell of a finite length L=0.4 m with initial 
deflections is studied by the example of a shell pivotally 
supported at x=0 and rigidly clamped at x=L. The outer 
layers are made of duralumin, and the inner layer consists 
of a composite filler [5] with a density of 

32
2 4.2 1 /0 kg mρ = × . The shell is externally reinforced 

with six longitudinal and three transverse ribs, which are 
evenly spaced along the coordinate axes iy y=  and 

jx x=  ( 0.25jx jL= , 1.3j = ; 0.25(2 )iy R iπ= , 1.6i = ). 
Geometric and physico-mechanical parameters of the shell 
and ribs:  
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where, ,R h  is the radius of the median surface and the 
thickness of the shell; 1 2 1 2 1 2, , ,i j i j i jh h F F ,H ,H  is 

geometric characteristics of the edges; 1 3,h h  is thickness 
of the outer layers. The material of the shell and ribs is 
considered elastic-plastic with a yield strength 

310MPaTσ = . 
The value of the initial dents is set by the dependence 

0
0 sin (4 ).w h x Lπ=  Its amplitude is equal to 0 0.02h.h =  

The boundary conditions of the hinge support at 0x =  
have the form 2 3 2 0u u ϕ= = = : 

11 11 1
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for rigidly fixed end at x L= : 1 2 3 1 2 0u u u ϕ ϕ= = = = = . 
The time-dependent conditions for 0t =  are taken as:  

1 2 3 1 2 0u u u ϕ ϕ= = = = = , 

1 2 3 1 2 0u t u t u t t t∂ ∂ ∂ ∂ ∂ ∂ ∂ ϕ ∂ ∂ ϕ ∂= = = = = . 
The law of loading action is given by a step function 

[ ]1 0( , ) sin ( ) ( ) ( )P y t A πt T t t Tη η= − − − . 
where, A0 is the the the amplitude caused by external 
influence; T is the load duration;  η(t) is the Heaviside’s 
function; t is the current time. The load parameters are

0 0.1 MPa×mA = , 650 10 s.T −= × As a result of solving the 
problem of in fluctuations depending on time and 
momentum, the parameters of the stress-strain state of the 
shell and ribs at discrete time points in the interval 
0 30Tt≤ ≤  are studied. It is established that under the 
action of a longitudinal edge load 1( , )P y t , the values of 
normal displacements u3, longitudinal deformations ε11 
and stresses σ11 are decisive. The maximum stress 
intensity values and plastic deformations act between the 
ribs, and the minimum stress intensity values are located 
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in the area of the reinforcing ribs. This is confirmed by 
numerous theoretical and experimental studies [4]. The 
distribution of the stress magnitude σ11 between the 
stringers along the longitudinal coordinate at time t=11 T 
is shown in Figure 2a. The deformation parameter ε11 has 
the same character.  

Figure 2b shows the dependence of the distribution of 
the magnitude of the stress intensity σi along the 
longitudinal coordinate along the line of symmetry 
between the stringers in the time period t=11 T. The 
maximum stresses in the 5 8x L≈  section correspond to 
the beginning of plastic deformations ( i Tσ σ≥ ).  

 

 
(a) 

 

 
 

(b) 
 

Figure 2. Distribution of longitudinal stresses σ11 and stress intensity σi 
in the longitudinal direction between the ribs at time t=11 T   

 
Starting from this point in time, plastic deformations 

develop throughout the study area. Therefore, this moment 
in time can be considered the beginning of the loss of 
dynamic stability of the structure. Before this point in time, 
the shell had been operating in an elastic region. Thus, the 
general loss of structural stability of ribbed shells under 
impulsed loading is usually preceded by a local loss of 
structural stability of the outer layer of the shell between 
the ribs, which is confirmed by the results of the paper 
[13]. The general case of deformation is realized only with 
very small bending stiffness of the reinforcing ribs. 

In the presence of an initial deflection w0 centered at 
point 2 3x L= , the intensity of local stresses and 
deformations in this area increases significantly. This is 
caused by an increase in the transverse displacement of the 
surface. The time dependence of the deflection value 3u  
in the cross section 2 3x L=   is shown in Figure 3a. If the 

beginning of a sharp increase in deflection is taken as the  
criterion of loss of stability [12], which, according to 
calculations, has the highest growth rate, then the time of 
loss of stability is 30.8 10t −≈ × s (Figure 3a). This 
corresponds to the time of t=16 T. However, according to 
the Mises criterion of material fluidity, plastic 
deformations occur starting from the moment of time t=10 
T. Thus, the use of different criteria for the loss of dynamic 
stability of discretely reinforced shells can lead to different 
results. Based on the results obtained, it can be concluded 
that the loss of stability of inhomogeneous shells largely 
corresponds to the time of occurrence of plastic 
deformations. 

 

 
(a) 

 

 
 

(b) 
 

Figure 3. The dependence of the deflection value u3 between the ribs on 
time and on the longitudinal coordinate 

 
When considering this problem, calculations were 

performed for different values of the amplitude 0h  of 
initial deflections. For example, in Figure 3b, lines 1, 2 and 
3 show the dependences of the magnitude of the 3u  
displacement for amplitudes that are 0.01, 0.02 and 0.03 h. 
It can be seen from the presented dependencies that with 
an increase in the amplitudes of the initial deflections, the 
displacement value 3u  also increases. It should be noted 
that for the amplitudes 0.02 and 0.03 h, plastic 
deformations occur much earlier than for 0.01 h. At the 
same time, local deformations and stresses increase 
significantly. The time period before the loss of stability is 
shortened. Destructions prevails in the area of the initial 
deflection location. Therefore, even relatively small initial 
deflections significantly affect the dynamic stability of 
discretely reinforced shells. 
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5. CONCLUSIONS 
A refined mathematical model and a method for 

calculating vibrations that change over time and the 
process of deformation from sudden action of discretely 
reinforced by ribs elastic multilayer composite shells with 
imperfections in the shape of the surface in the form of 
initial dents under the action of longitudinal the force that 
creates pressure have been developed. The problem is 
solved in a geometrically nonlinear theory of one-
dimensional and two-dimensional thin bodies, taking into 
account transverse shear and normal deformations in a 
wide wave range. New numerical solutions have been 
obtained for a reinforced three-layer composite cylindrical 
shell. The results of the SSS study showed that reinforcing 
ribs and structural shape errors under impulsed loading 
have a significant effect on deformations and stresses. The 
general complete loss of stability of the structure of the 
shell under the action of an non-stationary load is usually 
preceded by a local loss of resilience loss of structural 
stability  between the ribs due to the residual deformations 
that occur. 
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